[1] Fernandez-Pello A C. Micropower Generation Using Combustion: Issues and Approaches[J]. Proceedings of the Combustion Institute, 2002, 29(1): 883-899.
[2] Tim Edwards. Liquid Fuels and Propellants for Aerospace Propulsion[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[3] Lander H, Nixon A C. Endothermic Fuels for Hypersonic Vehicles[J]. Aircraft, 1971, 8(4): 200-207.
[4] 贺芳, 禹天福, 李亚裕. 吸热型碳氢燃料的研究进展[J]. 导弹与航天运载技术. 2005, 274(1): 26-29.
[5] Sobel D R, Spadaccini L J. Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion[J]. ASME Journal of Engineering for Gas Turbines and Power, 1997, 119(2): 344-351.
[6] Huang H, Sobel D R, Spadaccini L J. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling [R]. AIAA 2002-3871 .
[7] 张琴, 刘国柱, 李国柱, 等. 主动冷却通道内甲醇催化分解吸热过程[J]. 推进技术, 2015, 36(6): 927-932. (ZHANG Qin, LIU Guo-zhu, LI Guo-zhu, et al. Endothermic Process of Methanol Catalysis Decomposition in Active Fuel Cooling Channels[J]. Journal of Propulsion Technology, 2015, 36(6): 927-932.)
[8] Ward T A, Ervin J S, Striebich R C, et al, Simulation of Flowing Mildly-Cracked Normal Alkanes Incorporating Proportional Product Distributions[J]. Journal of Propulsion and Power, 2004, 20(3): 394-402.
[9] 阮波, 孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证[J]. 航空学报, 2011, 32(12): 2220-2226.
[10] 鲍文, 李献领, 秦江, 等. 碳氢燃料流动换热与裂解反应的建模及仿真[J]. 工程热物理学报, 2011, 32(10): 1705-1771.
[11] Gascoin N, Gillard P, Dufour E, et al. Validation of Transient Cooling Modelling for Hypersonic Application[J]. Journal of Thermophysics Heat Transfer, 2007, 21(1): 86-94.
[12] 侯凌云, 董宁, 孙大鹏. 矩形冷却槽道内煤油热裂解过程数值研究[J]. 推进技术, 2014, 35(1): 128-132. (HOU Ling-yun, DONG Ning, SUN Da-peng. Numerical Study on Thermal Cracking Process of Kerosene in a Rectangular Cooling Channel[J]. Journal of Propulsion Technology, 2014, 35(1):128-132.)
[13] 杨样, 张磊, 张若凌, 等. 超燃冲压发动机燃烧室主动冷却设计研究[J]. 推进技术, 2014, 35(2):208-212. (YANG Yang, ZHANG Lei, ZHANG Ruo-ling, et al. Design Research of an Actively Fuel-Cooled Scramjet Combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 208-212.)
[14] Held T J, Marchese A J, Dryer F L. A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis[J]. Combustion Science and Technology, 1997, 123(1-6): 107-146.
[15] Curran H J, Gaffuri P, Pitz W J, et al. A Comprehensive Modeling Study of n-Heptane Oxidation[J]. Combustion and Flame, 1998, 114(1): 149-177.
[16] Xie W, Fang W, Li D, et al. Coking of Model Hydrocarbon Fuels Under Supercritical Condition[J]. Energy & Fuels, 2009, 23(6): 2997-3001.
[17] Chakraborty J P, Kunzru D. High Pressure Pyrolysis of n-Heptane[J]. Journal of Analytical & Applied Pyrolysis, 2009, 86(1): 44-52.
[18] Wen Bao, Silong Zhang, Jiang Qin, et al. Numerical Analysis of Flowing Cracked Hydrocarbon Fuel Inside Cooling Channels in View of Thermal Management[J]. Energy, 2014, 67: 149-161.(编辑:史亚红) * 收稿日期:2017-01-24;修订日期:2017-06-08。作者简介:李浩瀚,男,硕士生,研究领域为超燃冲压发动机热防护。E-mail: lihh@ms.giec.ac.cn
|