[1] Gazi A, Vourliotakis G, Skevis G, et al. Assessment of Chemical Markers for Heat Release Rate Correlations in Laminar Premixed Flames[J]. Combustion Science and Technology, 2013, 185(10): 1482-1508.
[2] Kojima J, Ikeda Y, Nakajima T. Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames[J]. Combustion and Flame, 2004, 140(1-2):34-45.
[3] Hardalupas Y, Orain M. Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame[J]. Combustion and Flame, 2004, 139(3): 188-207.
[4] Tripathi M M, Krishnan S R, Srinivasan K K, et al. Chemiluminescence-Based Multivariate Sensing of Local Equivalence Ratios in Premixed Atmospheric Methane–Air Flames[J]. Fuel, 2012, 93: 684-691.
[5] 范周琴, 刘卫东, 林志勇, 等. 凹腔喷射超声速燃烧火焰结构实验研究[J]. 推进技术, 2013, 34(1): 62-68. (FAN Zhou-qin, LIU Wei-dong, LIN Zhi-yong, et al. Experimental Investigation on Supersonic Combustion Flame Structure with Cavity Injectors[J]. Journal of Propulsion Technology, 2013, 34(1): 62-68.)
[6] Floyd J, Geipel P, Kempf A M. Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D Measurements and Phantom Studies of a Turbulent Opposed Jet Flame[J]. Combustion and Flame, 2011, 158(2): 376-391.
[7] Haber L C, Vandsburger U, Saunders W R, et al. An Experimental Examination of the Relationship Between Chemiluminescent Light Emissions and Heat-Release Rate Under Non-Adiabatic Conditions[R]. ASME 2000-GT-0121.
[8] Kathrotia T, Riedel U, Warnatz J. A Numerical Study on the Relation of OH*, CH*, and C2* Chemiluminescence and Heat Release in Premixed Methane Flames[C]. Vienna: Proceedings of the European Combustion Meeting, 2009.
[9] Lauer M, Sattelmayer T. On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames with Mixture Gradients[J]. Journal of Engineering for Gas Turbine and Power, 2010, 132(1): 1-8.
[10] Prabasena B, R?der M, Kathrotia T, et al. Strain Rate and Fuel Composition Dependence of Chemiluminescent Species Profiles in Non-Premixed Counterflow Flames: Comparison with Model Results[J]. Apply Physics B, 2012, 107(3): 561-569.
[11] Nori V N, Seitzman J M. CH* Chemiluminescence Modeling for Combustion Diagnostics[J]. Proceedings of the Combustion Institute, 2009, 32(1): 895-903.
[12] 王宝璐, 额日其太. 甲烷反扩散火焰光谱特性实验研究[J]. 推进技术, 2016, 37(1): 105-111. (WANG Bao-lu, Eriqitai. Experiment Study of Inverse Methane/Air Diffusion Flame Emission Spectrum Properties[J]. Journal of Propulsion Technology, 2016, 37(1): 105-111.)
[13] Panoutsos C S, Hardalupas Y, Taylor A M K P. Numerical Evaluation of Equivalence Ratio Measurement Using OH* and CH* Chemiluminescence in Premixed and Non–Premixed Methane-Air Flames[J]. Combustion and Flame, 2009, 156(2): 273-291.
[14] Hossain A, Nakamura Y. A Numerical Study on the Ability to Predict the Heat Release Rate Using CH* Chemiluminescence in Non-Sooting Counterflow Diffusion Flames[J]. Combustion and Flame, 2014, 161(1):162-172.
[15] Nikolaou Z M, Swaminathan N. Heat Release Rate Markers for Premixed Combustion[J]. Combustion and Flame, 2014, 161(12): 3073-3084.
[16] 姚强, 李水清, 王宇. 燃烧学导论:概念与应用(第二版)[M]. 北京:清华大学出版社, 2014.
[17] Gaydon A G. Spectroscopy of Flames[M]. London: Chapman and Hall, 1957.
[18] Carl S A, Poppel M V, Peeters J. Identification of the CH+O2 →OH(A)+CO Reaction as the Source of OH(A-X) Chemiluminescence in C2H2/O/H/O2 Atomic Flames and Determination of Its Absolute Rate Constant Over the Range T=296 to 511K[J]. Journal of Physical Chemistry A, 2003, 107(50): 11001-11007.
[19] Smith G P, Park C, Schneiderman J, et al. C2 Swan Band Laser-Induced Fluorescence and Chemiluminescence in Low-Pressure Hydrocarbon Flame[J]. Combustion and Flame, 2005, 141(1-2): 66-77.
[20] Glass G P, Kistiakowsky G B, Michael J V, et al. Mechanism of the Acetylene-Oxygen Reaction in Shock Waves[J]. The Journal of Chemistry Physics, 1965, 42(2): 608-621.
[21] Elsamra R M I, Vranckx S, Carl S A. CH(A2Δ) Formation in Hydrocarbon Combustion: the Temperature Dependence of the Rate Constant of the Reaction C2H+O2→CH(A2Δ)+CO2[J]. Journal of Physical Chemistry A, 2005, 109(45): 10287-10293.
[22] Tamura M, Berg P A, Harrington J E, et al. Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flames[J]. Combustion and Flame, 1998, 114(3-4): 502-514.
[23] Dupont L, Bakali A E, Pauwels J F, et al. Investigation of Stoichiometric Methne/Air/Benzene(1.5%)and Methane/Air Low Pressure Flames[J]. Combustion and Flame, 2003, 135(1-2): 171-183.(编辑:张荣莉) * 收稿日期:2017-02-24;修订日期:2017-04-12。基金项目:国家自然科学基金(91441121;11272351)。作者简介:胡悦,男,硕士生,研究领域为基于自发辐射的燃烧诊断。E-mail: huyuebuaa@163.com
|