[1] 蔡国飙, 田辉, 俞南嘉. 固液混合火箭发动机技术[J]. 载人航天, 2009, (1): 15-18.
[2] 严万洪, 张炜, 周星, 等. MA/HTPB/石蜡燃料燃面退移速率测试方法及调节研究[J]. 推进技术, 2016, 37(4): 769-775. (YAN Wan-hong, ZHANG Wei, ZHOU Xing, et al. Measurement and Regression-Rate Modification of MA/HTPB/Paraffion Fuels[J]. Journal of Propulsion Technology, 2016, 37(4): 769-775.)
[3] 蔡国飙. 固液混合火箭发动机技术综述与展望[J]. 推进技术, 2012, 33(6): 831-839. (CAI Guo-biao. Development and Application of Hybrid Rocket Motor Technology: Overview and Prospect[J]. Journal of Propulsion Technology, 2012, 33(6): 831-839.)
[4] 杨玉新, 胡春波, 秦飞, 等. 固液发动机固体燃料瞬态退移速率[J]. 推进技术, 2008, 29(5): 533-538. (YANG Yu-xin, HU Chun-bo, QIN Fei, et al. Study of Instantaneous Regression Rate in Hybrid Rocketmotor[J]. Journal of Propulsion Technology, 2008, 29(5): 533-538.)
[5] Karabeyoglu M A. Combustion of Liquefying Hybrid Propellants,Part 2: Stability of? Liquid Films[J]. Journal of Propulsion?and?Power, 2002, 18(3): 621-630.
[6] 田辉, 吴俊峰, 俞南嘉, 等. 采用N2O与含金属HTPB燃料固液火箭发动机燃速试验研究[J]. 推进技术, 2014, 35(3): 413-421. (TIAN Hui, WU Jun-feng, YU Nan-jia, et al. Experimental Research of Regression Rate of N2O and Metalized HTPB Hybrid Rocket Motor[J]. Journal of Propulsion Technology, 2014, 35(3): 413-421.)
[7] Kim S, Moon H, Kim J, et al. Evaluation of Paraffin–Polyethylene Blends as Novel Solid Fuel for Hybrid Rockets[J]. Journal of Propulsion and Power, 2015, 31(6): 1750-1760.
[8] Storozhenko P A, Guseinov S L, Malashin S I. Nanodispersed Powders: Synthesis Methods and Practical Applications[J]. Nanotechnologies in Russia, 2009, 4(5-6): 262-274.
[9] Favaró F M, Sirignano W A, Manzoni M, et al. Solid-Fuel Regression Rate Modeling for Hybrid Rockets[J]. Journal of Propulsion and Power, 2012, 29(1): 205-215.
[10] Deluca L T, Galfetti L, Maggi F, et al. Characterization of HTPB-Based Solid Fuel Formulations: Performance, Mechanical Properties, and Pollution[J]. Acta Astronautica, 2013, 92(2): 150-162.
[11] Birce Dikici. Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies[J]. Energy and Fuels, 2009, 23(9): 4231-4235.
[12] Pastrone D. Review Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines[J]. International Journal of Aerospace Engineering, 2012, 1-12.
[13] Karabeyoglu M A, Cantwell B J, Zilliac G. Development of Scalable Space-Time Averaged Regression Rate Expressions for Hybrid Rockets[J]. Journal of Propulsion and Power, 2007, 23(4): 737-747.
[14] Fanton L, Paravan C, De Luca L T. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner[J]. International Journal of Aerospace Engineering, 2012, 2012: 1-15.
[15] 王英红, 肖秀友, 卿顺, 等. 含硼富燃料推进剂配方初步优化[J]. 含能材料, 2005, 13(3): 182-184.
[16] 秦钊. 固体燃料燃烧性能测试系统与HTPB基燃料的点火/燃烧特性研究[D]. 南京:南京理工大学, 2015.(编辑:史亚红) * 收稿日期:2017-01-12;修订日期:2017-04-06。作者简介:许志伟,男,硕士生,研究领域为固液混合推进燃料的配方设计和燃烧性能。E-mail: xuzhiwei91@163.com通讯作者:沈瑞琪,男,教授,博导,研究领域为含能材料、空间推进技术等。E-mail: rqshen@mail.njust.edu.cn
|