[1] He Wusheng. Review of Researches on Scramjet[J]. Journal of Rocket Propulsion, 2005, 31(1): 29-32.
[2] Xiong Y B, Zhu Y H, Jiang P X. Numerical Simulation of Transpiration Cooling for Sintered Metal Porous Strut of the Scramjet Combustion Chamber[J]. Heat Transfer Engineering, 2014, 35(6-8): 721-729.
[3] 熊宴斌, 祝银海, 姜培学, 等. 单相液体发汗冷却规律试验[J]. 航空动力学报, 2013, 28(9): 1956-1961.
[4] 杨卫华, 程惠尔, 王平阳, 等. 推力室喉部层板发汗冷却段的结构设计分析[J]. 推进技术, 2004, 25(4):316-319. (YANG Wei-hua, CHENG Hui-er, WANG Ping-yang, et al. Structural Design Analysis for Platelet Transpiration Cooling Section at Throat of Thrust Chamber[J]. Journal of Propulsion Technology, 2004, 25(4): 316-319.)
[5] Edwards Tim, Zabarnick Steven. Supercritical Fuel Deposition Mechanisms[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3117-3122.
[6] Edwards T, Harrison B. Update on the Development of JP-8+100[R]. AAIA 2004-3886.
[7] Spadaccini L J, Sobel D R, Huang H. Deposit Formation and Mitigation in Aircraft Fuels[J]. ASME Journal of Engineering for Gas Turbines and Power, 2001, 123(4): 741-746.
[8] Tao Zhi, Xu Guoqiang, Fu Yanchen. Experimental Study on Influences of Physical Factors to Supercritical RP-3 Surface and Liquid-Space Thermal Oxidation Coking [J]. Energy & Fuels, 2014, 28(9): 6098-6106.
[9] Zhu Kun, Xu guoqiang, Tao Zhi. Surface Deposition Characteristics of Supercritical Kerosene RP-3 Fuel within Treated and Untreated Stainless-Steel Tubes,Part 1: Short Thermal Duration[J]. Energy and Fuels, 2016, 30(4): 2687-2693.
[10] 王英杰, 徐国强, 邓宏武, 等. 进口温度影响航空煤油结焦特性实验[J]. 航空动力学报, 2009, 24(9):1972-1976.
[11] Pei Xinyan , Hou Lingyun. Experimental Study on the Layer Properties of RP-3 Oxidation Deposition[R].AAIA 2017-2213.
[12] Omer G, Leslie R, Rudnick, et al. Effect of the Reaction Temperature and Fuel Treatment on the Deposit Formation of Jet Fuels[J]. Energy and Fuels, 2008, 22(1): 433-439.
[13] Liu Zhaohui, Bi Qincheng. Dynamic Behaviors of Coke Deposition During Pyrolysis of China RP-3 Aviation Fuel[R]. AAIA 2015-3686.
[14] Xu Keke, Meng Hua. Numerical Study of Fluid Flows and Heat Transfer of Aviation Kerosene with Consideration of Fuel Pyrolysis and Surface Coking at Supercritical Pressures[J]. International Journal of Heat and Mass Transfer, 2016, 95: 806-814 .
[15] Clark R H, Thomas L. An Investigation of the Physical and Chemical Factors Affecting the Performance of Fuels in the JFTOT [R]. Shell Research Ltd, 1988.
[16] Lyle F A, James C M. Mechanistic Model for Formation of Coke in Pyrolysis Units Producing Ethylene[J]. Industrial & Engineering Chemistry Research, 1988, 27(5): 755-759.
[17] Wickham D T, Alptedin G T, Engel J R. Additives to Reduce Coking in Endothermic Heat Exchangers[R]. AIAA 99-2215.
[18] 张强强, 汪旭清, 刘国柱, 等. 主动冷却通道内吸热型碳氢燃料热裂解结焦抑制机理[J]. 推进技术, 2013, 34(12): 1713-1718. (ZHANG Qiang-qiang, WANG Xu-qing, LIU Guo-zhu, et al. Inhibition Mechanism of Pyrolytic Cokes from Endothermic Hydrocarbon Fuels in Regenerative Cooling Channels[J]. Journal of Propulsion Technology, 2013, 34(12): 1713-1718.)
[19] 杨彩华, 汪旭清, 刘国柱, 等. 冷却通道预氧化处理抑制碳氢燃料热裂解结焦的研究[J]. 推进技术, 2014, 35(2): 262-268. (YANG Cai-hua, WANG Xu-qing, LIU Guo-zhu, et al. Inhibiting Pyrolytic Deposition of Hydrocarbon Fuels on the Cooling Channels Through Pre-Oxidized Treatment[J]. Journal of Propulsion Technology, 2014, 35(2): 262-268.)
[20] Gascoin N, Gillard P, Bernard S, et al. Characterization of Coking Activity during Supercritical Hydrocarbon Pyrolysis[J]. Fuel Processing Technology, 2008, 89(12): 1416-1428.
[21] Fau G, Gascoin N, Gillard P. Fuel Pyrolysis through Porous Media: Coke Formation and Coupled Effect on Permeability[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 180-188.
[22] Tabach E E, Chetehouna K, Gascoin N, et al. Modeling the Spatio-Temporal Evolution of Permeability during Coking of Porous Material[R]. AAIA 2015-3663.
[23] 于娜娜, 张丽坤, 朱江兰, 等. 超临界流体萃取原理及应用[J]. 化工中间体, 2011, (8): 38-43.
[24] 薛金强, 尚丙坤, 王伟, 等. 吸热型碳氢燃料的裂解及结焦研究进展[J]. 化学推进剂与高分子材料, 2010, (3): 8-13. * 收稿日期:2017-03-28;修订日期:2017-06-08。基金项目:国家自然科学基金创新群体科学基金(51321002);国家自然科学基金重点项目(51536004)。作者简介:闫帅,男,硕士生,研究领域为多孔介质中超临界压力碳氢燃料结焦与传热。E-mail: yanshuai330@126.com通讯作者:姜培学,男,博士,教授,研究领域为航天航空与能源动力系统高温表面热防护与热控制、高温干热岩地热与 页岩气开发利用、热泵与制冷系统、二氧化碳地质封存等领域中的热质传递与热力系统。 E-mail: jiangpx@mail.tsinghua.edu.cn(编辑:梅瑛)
|