[1] 葛绍岩, 刘登瀛, 徐靖中, 等. 气膜冷却[M]. 北京:科学出版社, 1985.
[2] Pedersen D R, Eckert E R G, Goldstein R J. Film Cooling with Large Density Differences between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy[J]. Journal of Heat Transfer, 1977, 99(4): 620-627.
[3] Sinha A K. Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio[J]. Journal of Turbomachinery, 1991, 113(3): 442-449.
[4] Zaman K. Reduction of Jet Penetration in a Cross-Flow by Using Tabs[R]. AIAA 98-3276.
[5] 杨成凤, 张靖周, 陈利强, 等. 前缘突脊倾斜气膜冷却效果的实验[J]. 工程热物理学报, 2008, 29(7): 1174-1176.
[6] Lu Y, Dhungel A, Ekkad S V. Film Cooling Measurements for Cratered Cylindrical Inclined Holes[R]. ASME GT 2007-27386.
[7] Goldstein R J, Eckert E R G, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. International Journal of Heat & Mass Transfer, 1974, 17(5): 595-607.
[8] Hyams D G, Leylek J H. A Detailed Analysis of Film Cooling Physics, Part III: Streamwise Injection with Shaped Holes[J]. Journal of Turbomachinery, 1997, 122(1): 122-132.
[9] Dittmar J, Schulz A, Wittig S. Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments[J]. Journal of Turbomachinery, 2003, 125(1): 57-64.
[10] Saumweber C, Schulz A, Wittig S. Free-Stream Turbulence Effects on Film Cooling with Shaped Holes[J]. Journal of Turbomachinery, 2003, 125(1): 65-73.
[11] Gritsch M, Colban W, Scha?R H, et al. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes[J]. Journal of Turbomachinery, 2005, 127(4): 718-725.
[12] Saumweber C, Schulz A. Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes[J]. Journal of Turbomachinery, 2012, 134(6).
[13] Makki Y, Jakubowski G. An Experimental Study of Film Cooling from Diffused Trapezoidal Shaped Holes[R]. AIAA 86-1326
[14] Lee K D, Kim S M, Kim K Y. Numerical Analysis of Film-Cooling Performance and Optimization for a Novel Shaped Film-Cooling Hole[R]. ASME GT 2012-68529.
[15] Issakhanian E, Elkins C J, Eaton J K. Film Cooling Effectiveness Improvements Using a Non-Diffusing Oval Hole[R]. ASME GT 2015-42243.
[16] Sargison J E, Guo S M, Oldfield M L G, et al. A Converging Slot-Hole Film-Cooling Geometry, Part 1: Low-Speed Flat-Plate Heat Transfer and Loss[J]. Journal of Turbomachinery, 2002, 124(3): 453-460.
[17] Sargison J E, Guo S M, Oldfield M L G, et al. A Converging Slot-Hole Film-Cooling Geometry, Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss[J]. Journal of Turbomachinery, 2002, 124(3): 461-471.
[18] 李广超, 付建, 张魏, 等. 双向扩张孔出口宽度对气膜冷却特性影响[J]. 推进技术, 2016, 37(11):2088-2096. (LI Guang-chao, FU Jian, ZHANG Wei, et al. Effects of Exit Width on Film Cooling Characteristics[J]. Journal of Propulsion Technology, 2016, 37(11): 2088-2096.)
[19] 刘聪, 朱惠人, 付仲议, 等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术, 2016, 37(6): 1142-1150. (LIU Cong, ZHU Hui-ren, FU Zhong-yi, et al. Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Suction Side in Turbine Guide Vane[J]. Journal of Propulsion Technology, 2016, 37(6): 1142-1150.)
[20] Bai J T, Zhu H R, Liu C L. Film Cooling Characteristic of Double-Fan-Shaped Film Cooling Holes[R]. ASME GT 2009-59318.
[21] Yang X, Liu Z, Feng Z P. Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance[J]. Journal of Heat Transfer, 2015, 137(7), 071701.
[22] 刘存良. 新型高效气膜孔冷却特性研究[D]. 西安:西北工业大学, 2009.
[23] Moffat R J. Describing the Uncertainties in Experimental Results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. * 收稿日期:2017-11-13;修订日期:2018-01-10。基金项目:国家重点基础研究发展计划资助项目(2013CB035702)。作者简介:孟通,男,博士生,研究领域为航空发动机高温部件热防护。E-mail: mengtong1989@163.com通讯作者:朱惠人,男,博士,教授,研究领域为航空发动机高温部件热防护。E-mail: zhuhr@nwpu.edu.cn(编辑:史亚红)
|