[1] 魏大盛, 王延荣. 粉末冶金涡轮盘裂纹扩展寿命分析[J]. 推进技术, 2008, 29(6): 753-758. (WEI Da-sheng, WANG Yan-rong. Lifing Methodology of Crack Propagation in Powder Metallurgy Turbine Disk[J]. Journal of Propulsion Technology, 2008, 29(6): 753-758.)
[2] 刘德林, 李影, 姜涛, 等. FGH97粉末高温合金的断裂特征[J]. 机械工程材料, 2013, 37(11): 49-54.
[3] 张义文, 刘建涛. 粉末高温合金研究进展[J]. 中国材料进展, 2013, 32(1): 1-11.
[4] 张莹, 张义文, 张娜, 等. 粉末冶金高温合金FGH97的低周疲劳断裂特征[J]. 金属学报, 2010, 46(4): 444-450.
[5] 佴启亮, 董建新, 张麦仓, 等. 粉末高温合金FGH97疲劳裂纹扩展行为[J]. 工程科学学报, 2016, 38(2): 248-256.
[6] 袁善虎, 魏大盛, 王延荣. FGH97缺口试样基于黏塑性本构的弹塑性响应分析[J]. 航空动力学报, 2012, 27(10): 2348-2355.
[7] 刘浩, 鲍蕊, 岳晨阳, 等. 应力强度因子变程相关的FGH97蠕变-疲劳裂纹扩展主导因素[J]. 航空动力学报, 2016, 31(6): 1400-1407.
[8] Elber W. Fatigue Crack Closure under Cyclic Tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-44.
[9] Newman J C Jr. A Crack Opening Stress Equation for Fatigue Crack Growth[J]. International Journal of Fracture, 1984, 24(4): 131-135.
[10] Dougherty J D. Fatigue Crack Propagation and Closure Behavior of Modified 1070 Steel: Finite Element Study[J]. Engineering Fracture Mechanics, 1997, 56(2): 189-212.
[11] Solanki Kiran J C. Newman Jr. Finite Element Analysis of Plasticity-Induced Fatigue Crack Closure: an Overview[J]. Engineering Fracture Mechanics, 2004, 71(2): 149-171.
[12] Antunes F V, Rodrigues D M. Numerical Simulation of Plasticity Induced Crack Closure: Identification and Discussion of Parameters[J]. Engineering Fracture Mechanics, 2008, 75(10): 3101-3120.
[13] 李亚智, 李学峰. 疲劳裂纹闭合的数值模拟方法[J]. 机械科学与技术, 2006, 25(10): 1233-1237.
[14] 李学峰. 疲劳裂纹闭合效应数值模拟方法研究[D]. 西安:西北工业大学, 2005.
[15] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[16] 袁善虎. 粉末冶金材料及结构的力学行为试验与数模模拟[D]. 北京:北京航空航天大学, 2014.
[17] Pommier S. A Study of the Relationship Between Variable Level Fatigue Crack Growth and the Cyclic Constitutive Behavior of Steel[J]. International Journal of Fatigue, 2001, 23 (Supplement1): S111-S118.
[18] McClung R C, Sehitoglu H. On the Finite Element Analysis of Fatigue Crack Closure-1.Basic Modeling Issues[J]. Engineering Fracture Mechanics, 1983, 33(2): 237-252.
[19] Roychowdhury S. A Numerical Investigation of 3D Small-Scale Yielding Fatigue Crack Growth[J]. Engineering Fracture Mechanics, 2003, 70(17): 2363-2383.
[20] Solanki Kiran J C. Newman Jr. Finite Element Modeling of Plasticity-Induced Crack Closure with Emphasis on Geometry and Mesh Refinement Effects[J]. Engineering Fracture Mechanics, 2003, 70(12): 1475-1489.
[21] 陈亚龙, 杨晓光, 石多奇. 带保载平面应变塑性诱发裂纹闭合效应[J]. 航空动力学报, 2010, 25(9):2030-2035.
[22] 袁善虎, 王延荣, 魏大盛. 考虑应力松弛的缺口疲劳寿命预测方法[J]. 推进技术, 2014, 35(5): 681-687. (YUAN Shan-hu, WANG Yan-rong, WEI Da-sheng. Method for Fatigue Life Prediction of Notched Specimen with Considered Stress Relaxation[J]. Journal of Propulsion Technology, 2014, 35(5): 681-687.)
[23] Paris P C, Hiroshi Tada, Donald J K. Service Load Fatigue Damage-a Historical Perspective[J]. International Journal of Fatigue, 1999, 21(Supplement1): 35-46. * 收稿日期:2017-04-13;修订日期:2017-06-28。基金项目:国家自然科学基金(51475024)。作者简介:胡晨,男,硕士生,研究领域为航空发动机结构强度。E-mail: callmehc@163.com通讯作者:魏大盛,男,博士后,研究领域为航空发动机结构强度。E-mail: dasheng.w@163.com(编辑:史亚红)
|