[1] Federal Aviation Regulations. 14 CFR Part 33 Airworthiness Standards: Aircraft Engines[S]. US: Federal Aviation Administration, 1993: 81-99.
[2] Genta G. Dynamics of Rotating Systems[M]. Germany:Springer-Verlag, 2005.
[3] Dzenan H. Mechanical Loads on a Turbofan Engine Structure at Blade-Off[D]. Sweden: Lulea University of Technology, 2009.
[4] Sinha S K. Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event with Contact-Impact Rub Loads[J]. Journal of Sound and Vibration, 2013, 332(9): 2253-2283.
[5] Verrier P, Martinal H, Kohli-Lynch S. Blade Loss Simulations of Bending Vibrations Applied to a 1750mW Turbo Generator Set[C]. Korea: 8th IFToMM International Conference on Rotor Dynamics, 2010: 725-730.
[6] Ortiz R, Herran M, Chalons H. Blade Loss Studies in Low-Pressure Turbines from Blade Containment to Controlled Blade-Shedding[C]. Portugal: Computational Methods and Experimental Measurements, 2009: 412-422.
[7] Cosme N, Chevrolet D, Bonini J, et al. Prediction of Transient Engine Loads and Damage due to Hollow Fan Blade-Off[J]. European Journal of Computational Mechanics, 2002, 11(5): 651-666.
[8] Jain R. Prediction of Transient Loads and Perforation of Engine Casing during Blade-Off Event of Fan Rotor Assembly[C]. Rhode Island: Proceedings of the IMPLAST 2010 Conference, 2010: 1-10.
[9] Sinha S K. Dynamic Characteristics of a Flexible Bladed-Rotor with Coulomb Damping Due to Tip-Rub[J]. Journal of Sound and Vibration, 2004, 273(4-5): 875-919.
[10] Husband J B. Developing an Efficient FEM Structural Simulation of a Fan Blade-Off Test in a Turbofan Jet Engine[D]. Canada:University of Saskatchewan, 2007.
[11] 王海飞, 陈果. 考虑多叶片-机匣多点变形转静碰摩模型的机匣响应特征与验证[J]. 推进技术, 2016, 37(1): 128-145. (WANG Hai-fei, CHEN Guo. Casing Response Characteristics and Its Verification Considering Multiple Blades-Casing Multiple Point Deformation Rotor-Stator Rubbing Model[J]. Journal of Propulsion Technology, 2016, 37(1): 128-145.)
[12] 张思进. 机械碰撞运动中的非光滑动力学[M]. 长沙:湖南大学出版社, 2008.
[13] 张华彪. 航空发动机转子系统碰摩的非线性动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
[14] Meng M W, Jun W J, Zhi W. Frequency and Stability Analysis Method of Asymmetric Anisotropic Rotor-Bearing System Based on Three-Dimensional Solid Finite Element Method[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(10).
[15] 邓旺群, 聂卫健. 高速柔性转子临界转速随支承刚度的变化规律[C]. 大连:第11届全国转子动力学学术讨论会, 2014.
[16] 陈萌, 马艳红, 刘书国, 等. 航空发动机整机有限元模型转子动力学分析[J]. 北京航空航天大学学报, 2007, 33(9): 1013-1016.
[17] 高金海, 洪杰. 航空发动机整机动力特性建模技术研究[J]. 战术导弹技术, 2006, 27(3): 29-35.
[18] 张力. 高涵道比涡扇发动机转子系统动力特性及安全性设计理论方法[D]. 北京:北京航空航天大学, 2015.
[19] 张大义, 刘烨辉, 洪杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5): 768-773. (ZHANG Da-yi, LIU Ye-hui, HONG Jie, et al. Investigation on Dynamical Modeling and Vibration Characteristics for Aero Engine[J]. Journal of Propulsion Technology, 2015, 36(5): 768-773.) * 收稿日期:2017-08-10;修订日期:2017-10-31。基金项目:国家自然科学基金(51575022;51475021);国家航空科学基金(20142151024)。作者简介:彭刚,男,硕士,高级工程师,研究领域为航空发动机设计及结构可靠性。E-mail: pgang_gfs@163.com通讯作者:曹冲,男,硕士,助理工程师,研究领域为航空发动机转子动力学。E-mail: caochong111@126.com(编辑:梅瑛)
|