[1] 柴建, 张钟毓, 李新, 等. 中国航空燃油消费分析及预测[J]. 管理评论, 2016, 28(1): 11-21.
[2] 杨万柳. 国际航空排放全球治理的国际视域[J]. 北京理工大学学报, 2015, 17(4): 123-128.
[3] Zhang C, Hui X, Lin Y Z, et al. Recent Development in Studies of Alternative Jet Fuel Combustion: Progress, Challenges, and Opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138.
[4] Hari T K, Yaakob Z, Binitha N N. Aviation Biofuel from Renewable Resources: Routes, Opportunities and Challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1234-1244.
[5] Pereira S R, Fontes T, Coelho M C. Can Hydrogen or Natural Gas be Alternatives for Aviation?-A Life Cycle Assessment[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13266-13275.
[6] Withers M R, Malina R, Gilmore C K. Economic and Environmental Assessment of Liquefied Natural Gas as a Supplemental Aircraft Fuel[J]. Progress in Aerospace Sciences, 2014, 66(2S): 17-36.
[7] Conroy T, Wei K L E, Bil C, et al. Liquefied Natural Gas Aircraft: A Life Cycle Costing Perspective[R]. AIAA 2014-0182.
[8] Roberts R A, Nuzum S R, Wolff M. Liquefied Natural Gas the Next Aviation Fuel[R]. AIAA 2015-4247.
[9] Yahyaoui M. The Use of LNG as Aviation Fuel: Combustion and Emissions[R]. AIAA 2015-3730.
[10] Hassan M I, Aung K T, Faeth G M. Measured and Predicted Properties of Laminar Premixed Methane/Air Flames at Various Pressures[J]. Combustion & Flame, 1998, 115 (4): 539-550.
[11] Rozenchan G, Zhu D L, Law C K. Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 ATM[J]. Proceedings of Combustion Institute, 2002, 29 (2): 1461-1470.
[12] Park O, Veloo P S, Liu N. Combustion Characteristics of Alternative Gaseous Fuels[J]. Proceedings of the Combustion Institute, 2011, 33(1): 887-894.
[13] Lowry W. Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures[J]. Journal of Engineering for Gas Turbines & Power, 2011, 133(133): 855-873.
[14] 何佳佳, 胡二江, 金春, 等. 不同初始温度下甲烷-空气混合气层流燃烧速率的测定[J]. 内燃机学报, 2009, 27(6): 487-492.
[15] 常铭, 苗海燕, 路林, 等. 初始温度/压力对天然气层流燃烧速率的影响[J]. 燃烧科学与技术, 2010, 16(4): 309-316.
[16] 曾文, 陈欣, 马洪安, 等. RP-3航空煤油层流燃烧特性的实验[J]. 航空动力学报, 2015, 30(12):2888-2896.
[17] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J]. 推进技术, 2014, 35(8): 1139-1145. (ZENG Wen, LI Hai-xia, MA Hong-an, et al. Reduced Chemical Reaction Mechanism of Surrogate Fuel for RP-3 Kerosene[J]. Journal of Propulsion Technology, 2014, 35(8): 1139-1145.)
[18] 郑东, 于维铭, 钟北京. RP-3航空煤油替代燃料及其化学反应动力学模型[J]. 物理化学学报, 2015, (4): 636-642.
[19] 于维铭, 袁振, 钟北京. 正癸烷/甲苯/甲基环己烷火焰传播速度实验研究[J]. 推进技术, 2014, 35(11): 1544-1550. (YU Wei-ming, YUAN Zhen, ZHONG Bei-jing. Experimental Study on Flame Speed of n-Decane/Toluene/Methylcyclohexane[J]. Journal of Propulsion Technology, 2014, 35(11): 1544-1550.)
[20] Hu E J, Huang Z H, He J J. Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane/Hydrogen/Air Flames[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4876-4888.
[21] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue-jun, YU Gang. Analysis of Thermohysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.)
[22] Bradley D, Hicks R A, Lawes M, et al. The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb[J]. Combustion and Flame, 1998, 115(1): 126-144.
[23] Vukadinovic V, Habisreuther V P, Zarzalis N. Influence of Pressure and Temperature on Laminar Burning Velocity and Markstein Number of Kerosene Jet A-1: Experimental and Numerical Study[J]. Fuel, 2013, 111(3): 401-410.
[24] Kumar K, Sung C J, Hui X. Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels[R]. AIAA 2009-991. * 收稿日期:2017-04-11;修订日期:2017-06-20。基金项目:国家自然科学基金(51606129);辽宁省自然科学基金(201602577);辽宁省教育厅科学研究一般项目(L2015404)。作者简介:刘宇,男,博士,讲师,研究领域为航空发动机燃料燃烧实验与化学反应机理。E-mail: liuyu_201409@163.com通讯作者:曾文,博士后,教授,研究领域为航空发动机燃烧过程与排放物生成的数值研究。E-mail: zengwen928@sohu.com(编辑:朱立影)
|