[1] ZHANG Tian-ping, WANG Xiao-yong, JIANG Hao-cheng. Initial Flight Test Results of the LIPS-200 Electric Propulsion System on SJ-9A Satellite[C]. Washington DC: 33th International Electric Propulsion Conference, 2013.
[2] 郑茂繁, 江豪成. 改善离子推力器束流均匀性的方法[J]. 推进技术, 2011, 32(6): 763-769. (ZHENG Mao-fan, JIANG Hao-cheng. Method of Improving Beam Current Profile for Ion Thruster[J]. Journal of Propulsion Technology, 2011, 32(6): 763-769.)
[3] 周志成, 王敏, 仲小清, 等. 口径离子推力器寿命模型及评估[J]. 真空科学与技术学报, 2015, 35(9): 1088-1093.
[4] Noushkam N, Basak D, Glogowski M, et al. Sputtering Effects of Xenon Ion Thruster Plume on Common Spacecraft Materials[R]. AIAA 2015-4642.
[5] Brophy J, Wilbur P. Simple Performance Model for Ring and Line Cusp Ion Thrusters[R]. AIAA 85-1736.
[6] Wirz R, Goebel D. Effects of Magnetic Field Topography on Ion Thruster Discharge Performance [J]. Plasma Sources Science and Technology, 2008, 17(3).
[7] Othmer C, Glassmeier K H, Motschmann U, et al. Numerical Simulation of Ion Thruster-Induced Plasma Dynamics—the Model and Initial Results[J]. Advances in Space Research, 2002, 29(9): 1357-1362.
[8] 陈娟娟, 张天平, 刘明正, 等. LIPS-200 离子推力器放电室原初电子动力学行为的数值模拟研究[J]. 推进技术, 2015, 36(1): 155-161. (CHEN Juan-juan, ZHANG Tian-ping, LIU Ming-zheng, et al. Investigation on Dynamical Behavior of Primary Electrons in LIPS-200 Ion Thruster Discharge Chamber[J]. Journal of Propulsion Technology, 2015, 36(1): 155-161.)
[9] 孙安邦, 毛根旺, 夏广庆, 等. 离子推力器放电腔内等离子体流动规律的全离子模型[J]. 推进技术, 2012, 24(10): 2469-2473. (SUN An-bang, MAO Gen-wang, XIA Guang-qing, et al. Full Particles Model of Plasma Flow for Ion Thruster Discharge Chamber[J]. Journal of Propulsion Technology, 2012, 24(10): 2469-2473.)
[10] Herman D A, Gallimore A D. Discharge Chamber Plasma Structure of a 30cm NSTAR-Type Ion Engine[R]. AIAA 2004-3794.
[11] Carruth M R. A Review of Studies on Ion Thruster Beam and Charge-Exchange Plasmas[R]. AIAA 82-1944.
[12] 李娟, 楚豫川, 曹勇. 离子推力器羽流场模拟以及Mo+CEX沉积分析[J]. 推进技术, 2012, 33(1): 131-138. (LI Juan , CHU Yu-chuan , CAO Yong. Numerical Simulations of Ion Thruster Plume Contamination Interactions on Spacecraft[J]. Journal of Propulsion Technology, 2012, 33(1): 131-138.)
[13] Roy R S, Hastings D, Gastonis N. Ion-Thruster Plume Modeling for Backflow Contamination[J]. Journal of Spacecraft and Rockets, 1996, 33(33): 525-534.
[14] Reynolds T W. Mathematical Representation of Current Density Profiles from Ion Thruster[R]. AIAA 71-693.
[15] 商圣飞, 顾左, 贺碧蛟, 等. 离子推力器束流密度分布模型[J]. 真空科学与技术学报, 2015, 35(12): 1414-1419.
[16] Zhang Z, Tang H B, Ren J X, et al. Calibrating Ion Density Profile Measurements in Ion Thruster Beam Plasma[J]. American Institute of Physics, 2016, 87(11).
[17] 贾艳辉, 张天平, 郑茂繁, 等. 离子推力器栅极系统电子反流阈值的数值分析[J]. 推进技术, 2012, 33(6): 991-998. (JIA Yan-hui, ZHANG Tian-ping, ZHENG Mao-fan, et al. Numerical Analysis for Electron Backstreaming Accelerator Grid Limited Voltage for 20 cm Xe Ion Thruster Grid System[J]. Journal of Propulsion Technology, 2012, 33(6): 991-998.)
[18] 陈琳英, 江豪成, 郑茂繁. 离子推力器束流密度分布测量[J]. 真空与低温, 2007, 13(3): 155-160.
[19] Hofer R R, Walker M, Gallimore A D. A Comparison of Nude and Collimated Faraday Probes for Use with Hall Thrusters[R]. IEPC-2001-020.
[20] Okawa Y, Takegahara H, Tachinabana T. Numerical Analysis of Ion Beam Extraction Phenomena in an Ion Thruster[R]. IEPC-2001-097. * 收稿日期:2017-04-16;修订日期:2017-06-06。基金项目:真空低温技术与物理重点实验室基金(9140C55026150C55013)。作者简介:龙建飞,男,博士,研究领域为空间电推进技术。E-mail: ljf510@163.com(编辑:梅瑛)
|