[1] ANSYS INC. Powered by Innovation[J]. ANSYS Advantage, 2013, VII(2):17-21.
[2] Skira C A. Reducing Military Aircraft Engine Development Cost through Modeling and Simulation[C]. Paris: RTO AVT Symposium on Reduction of Military Vehicle Acquisition Time and Cost Through Advanced Modelling and Virtual Simulation, 2002.
[3] Holcomb L, Smith P, Hunter P. NASA High Performance Computing and Communications Program[J]. Journal of Supercomputing, 1994, 51(2): 95-96.
[4] Nichols L D, Chamis C C. Numerical Propulsion System Simulation: An Interdisciplinary Approach[R]. AIAA 91-3554.
[5] Panel (AVT) Task Group. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation[R]. TR-AVT-036.
[6] Ivanov M, Nigmatullin R. Interconnected Multi-Level Design of Gas Turbine Elements[C]. Reno: 41st Aerospace Sciences Meeting and Exhibit, 2003.
[7] Homsi P. VIVACE -Value Improvement through a Virtual Aeronautical Collaborative Enterprise[R]. Technical Leaflet Final, 2007.
[8] Slotnick J, Khodadoust A, Alonso J, et al. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences[R]. NASA/CR-2014-218178.
[9] Anand M, James S, Zhu J. Large-Eddy Simulations as a Design Tool for Gas Turbine Combustion Systems[J]. AIAA Journal, 2006, 44(4): 674-686.
[10] Cho C H, Baek G M, Sohn C H, et al. A Numerical Approach to Reduction of NOx Emission from Swirl Premix Burner in a Gas Turbine Combustor[J]. Applied Thermal Engineering, 2013, 59(1): 454-463.
[11] Rizk N K, Mongia H C. NOx Model for Lean Combustion Concept[J]. Journal of Propulsion and Power, 1995, 11(1): 161-169.
[12] Anand M S, Eggels R, Staufer M, et al. An Advanced Unstructured-Grid Finite-Volume Design System for Gas Turbine Combustion Analysis[C]. Karnataka: ASME 2013 Gas Turbine India Conference Bangalore, 2013.
[13] Jones W, Tyliszczak A. Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor[J]. Flow Turbulence and Combustion, 2010, 85: 711-734.
[14] Spalding D B. A General Purpose Computer Program for Multi-Dimensional One- and Two-Phase Flow[J]. Mathematics & Computers in Simulation, 1981, 23(3):267-276.
[15] Singhal A. A Critical Look of the Progress in Numerical Heat Transfer and Some Suggestions for Improvement[J]. Numerical Heat Transfer, 1985, 8: 505-517.
[16] Wei D Y, Pierron X, Backman D G, et al. Accelerated Insertion of Materials for Aircraft Engine Superalloy Applications[C]. Warrendale: The Minerals, Metals, and Materials Society - TMS Annual Meeting, 2001.
[17] Drosback M. Materials Genome Initiative: Advances and Initiatives[J]. Journal of the Minerals, Metals, and Materials Society, 2014, 66(3): 334-335.
[18] Council N R. Application of Lightweighting Technology to Military Aircraft, Vessels, and Vehicles[M]. Washington, DC: The National Academies Press, 2012.
[19] Townsend J C, Weston R P, Eidson T M. A Programming Environment for Distributed Complex Computing. An Overview of the Framework for Interdisciplinary Design Optimization (FIDO) Project.NASA Langley TOPS Exhibit H120b[R]. NASA-TM-109058.
[20] Gray J, Moore K, Naylor B. OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and Optimization[C]. Fort Worth: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2010.
[21] Panchenko V, Moustapha H, Mah S, et al. Preliminary Multi-disciplinary Optimization in Turbomachinery Design[C]. Paris: RTO AVT Symposium on Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation, 2002.
[22] Parker K I, Guo T H. Development of a Turbofan Engine Simulation in a Graphical Simulation Environment[R]. NASA/TM-2003-212543.
[23] Frederick D K, DeCastro J S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)[R]. NASA/TM-2007-215026.
[24] Mink G, Behbahani A. The AFRL ICF Generic Gas Turbine Engine Model[C]. Tucson: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005.
[25] Lytle J, Follen G, Naiman C, et al. Numerical Propulsion System Simulation (NPSS) 1999 Industry Review[R]. NASA/TM-2000-209795.
[26] Lytle J, Follen G, Naiman C, et al. 2001 Numerical Propulsion System Simulation Review[R]. NASA/TM-2002-211197.
[27] Turner M, Norries A, Veres J. High Fidelity 3D Simulation of the GE90(invited)[C]. Orlando: 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003.
[28] Gallimore S J, Bolger J J, Cumpsty N A, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading, Part I: University Research and Methods Development[J]. Journal of Turbomachinery, 2002, 124(4):33-47.
[29] Luppold R H, Roman J R, Gallops G W, et al. Estimation In-Flight Engine Performance Variations Using Kalman Filter Concepts[R]. AIAA 89-2584.
[30] Volponi A, Enhanced Self Tuning On-Board Real-Time Model(eSTORM) for Aircraft Engine Performance Health Tracking[R]. NASA/CR-2008-215272.
[31] Tersin H. Summary of VERDI Public Information[R]. AST4-CT-2005516046. * 收稿日期:2018-01-21;修订日期:2018-03-07。作者简介:曹建国,男,硕士,研究员,现任航发集团党组书记、董事长,研究领域为航空航天系统工程管理及系统仿真技术。 (编辑:田佳莹)
|