[1] Doltsinis I, Kang Z. Robust Design of Structures Using Optimization Methods[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23): 2221-2237.
[2] Parkinson A. Robust Mechanical Design Using Engineering Models[J]. Transactions of the ASME Journal of Mechanical Design, 1995, (117): 48-54.
[3] Gijo E V, Scaria J. Product Design by Application of Taguchi's Robust Engineering Using Computer Simulation[J]. International Journal of Computer Integrated Manufacturing, 2012, 25(9): 761-773.
[4] Sun G, Fang J, Tian X, et al. Discrete Robust Optimization Algorithm Based on Taguchi Method for Structural Crashworthiness Design[J]. Expert Systems with Applications, 2015, 42(9): 4482-4492.
[5] Elsayed K, Lacor C. Robust Parameter Design Optimization Using Kriging, RBF and RBFNN with Gradient-Based and Evolutionary Optimization Techniques[J]. Applied Mathematics & Computation, 2014, 236(4):325-344.
[6] 高伟钊, 莫旭辉, 付锐, 等. 基于Kriging的泡沫填充锥形薄壁结构耐撞性6σ稳健性优化设计[J]. 固体力学学报, 2012, 33(4): 370-378.
[7] 崔杰, 张维刚, 常伟波, 等. 基于双响应面模型的碰撞安全性稳健性优化设计[J]. 机械工程学报, 2011, 47(24): 97-103.
[8] 吴小锋, 刘春节, 干为民, 等. 面向外啮合齿轮泵困油问题的健壮性设计[J]. 航空动力学报, 2015, 30(11): 2721-2729.
[9] Vining G, Myers R. Combining Taguchi and Response Surface Philosophies-a Dual Response Approach[J]. Journal of Quality Technology, 1990, 22(1): 38-45.
[10] Lin D K J, Tu W. Dual Response Surface Optimization[J]. Journal of Quality Technology, 1995, 27(1): 34-39.
[11] Zhou X J, Ma Y Z, Tu Y L, et al. Ensemble of Surrogates for Dual Response Surface Modeling in Robust Parameter Design[J]. Quality and Reliability Engineering International, 2013, 29(2): 173-197.
[12] Arungpadang T R, Kim Y J. Robust Parameter Design Based on Back Propagation Neural Network[J]. Korean Management Science Review, 2012, 29(3): 81-89.
[13] Wang S J, Kuochin H. The Application of the First-Order Second-Moment Method to Analyze Poroelastic Problems in Heterogeneous Porous Media[J]. Journal of Hydrology, 2009, 369(1): 209-221.
[14] Wan C, Xu Z, Dong Z Y, et al. Probabilistic Load Flow Computation Using First-Order Second-Moment Method[C]. San Diego: IEEE Power and Energy Society General Meeting, 2012.
[15] Raviprakash A, Prabu B, Alagumurthi N. Mean Value First Order Second Moment Analysis of Buckling of Axially Loaded Thin Plates with Random Geometrical Imperfections[J]. International Journal of Engineering, Science and Technology, 2010, 2(4): 150-162.
[16] Lee T W. A Study for Robustness of Objective Function and Constraints in Robust Design Optimization[J]. Journal of Mechanical Science and Technology, 2006, 20(10): 1662-1669.
[17] Huang B, Du X. Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation[J].Reliability Engineering & System Safety, 2008, 93(2):325-336.
[18] Maskey S, Guinot V. Improved First Order Second Moment Method for Uncertainty Estimation in Flood Forecasting[J]. Hydrological Sciences Journal, 2003, 48(2): 183-196.
[19] 赵勇, 李本威, 朱飞翔, 等. 基于 QPSO 算法的压气机特性代理模型优化[J]. 推进技术, 2014, 35(11): 1537-1543. (ZHAO Yong, LI Ben-wei, ZHU Fei-xiang,et al. Surrogate Model Optimization of Compressor Characteristics Based on QPSO Algorithm[J]. Journal of Propulsion Technology, 2014, 35(11): 1537-1543.)
[20] 贺谦, 李元生, 温志勋, 等. 涡轮叶片多学科可靠性及稳健设计优化[J]. 推进技术, 2010, 31(2): 193-197. (HE Qian, LI Yuan-sheng, WEN Zhi-xun, et al. Multidisciplinary Probabilistic and Robust Design Optimization for Turbine Blade[J]. Journal of Propulsion Technology, 2010, 31(2): 193-197.)(编辑:史亚红) * 收稿日期:2017-06-09;修订日期:2017-07-12。基金项目:国家自然科学基金(51275024)。作者简介:陈志英,男,博士,教授,研究领域为发动机总体结构优化设计,可靠性与维修性工程。 E-mail: chenzhiying@buaa.edu.cn
|