[1] Wennerstrom A J. Highly Loaded Axial Flow Compressors: History and Current Developments[J]. Journal of Turbomachinery, 1990, 112(4): 567-578.
[2] Lord W K, MacMartin D G, Tillman T G. Flow Control Opportunities in Gas Turbine Engines[R]. AIAA 2000-2234.
[3] Akcayoz E, Vo H D, Mahallati A. Controlling Corner Stall Separation with Plasma Actuators in a Compressor Cascade[J]. Journal of Turbomachinery, 2016, 138(8).
[4] Kleven C, Corke T C, Dan F, et al. 3-D Separation Control in a Linear Cascade with Diffusion[R]. AIAA 2016-0653.
[5] Simon E, Howard H. Separation-Control Mechanisms of Steady and Pulsed Vortex-Generator Jets[J]. Journal of Propulsion & Power, 2012, 28(6): 1201-1213.
[6] Hecklau M, Wiederhold O, Zander V, et al. Active Separation Control with Pulsed Jets in a Critically Loaded Compressor Cascade[J]. AIAA Journal, 2011, 49(8): 1729-1739.
[7] Evans S, Hodson H, Hynes T, et al. Flow Control in a Compressor Cascade at High Incidence[J]. Journal of Propulsion & Power, 2010, 26(4): 828-836.
[8] Liesner K, Meyer R, Gmelin C, et al. On the Performance of Boundary Layer Suction for Secondary Flow Control in a High Speed Compressor Cascade[R]. AIAA 2013-2749.
[9] Lu X, Chu W, Zhang Y, et al. Experimental and Numerical Investigation of a Subsonic Compressor with Bend-Skewed Slot-Casing Treatment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(12):1785-1796.
[10] Cevik M, Vo H D, Yu H. Casing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance[J]. Journal of Turbomachinery, 2016, 138(12).
[11] Hergt A, Dorfner C, Steinert W, et al. Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator-Part II: Experimental and Numerical Cascade Investigation[J]. Journal of Turbomachinery, 2010, 133(2).
[12] Varpe M K, Pradeep A M. Benefits of Nonaxisymmetric Endwall Contouring in a Compressor Cascade with a Tip Clearance[J]. Journal of Fluids Engineering, 2014, 137(5).
[13] Hergt A, Meyer R, Engel K. Effects of Vortex Generator Application on the Performance of a Compressor Cascade[J]. Journal of Turbomachinery, 2012, 135(2).
[14] 吴培根, 王如根, 郭飞飞, 等. 涡流发生器对高负荷扩压叶栅性能影响的机理分析[J]. 推进技术, 2016, 37(1): 49-56. (WU Pei-gen, WANG Ru-gen, GUO Fei-fei, et al. Mechanism Analysis of Effects of Vortex Generator on High-Load Compressor Cascade[J]. Journal of Propulsion Technology, 2016, 37(1): 49-56.)
[15] 周敏, 王如根, 曹朝辉, 等. 开槽位置和槽道结构对叶栅性能的影响[J]. 空气动力学学报, 2008, 26(3): 400-404.
[16] 周敏, 王如根, 曾令君, 等. 槽道宽度对压气机叶栅气动性能的影响[J]. 航空动力学报, 2008, 23(6):1077-1081.
[17] 周敏, 王如根, 曹朝辉, 等. 槽道进气角和转折角对叶栅流场特性影响的研究[J]. 航空动力学报, 2008, 23(1): 125-129.
[18] 王如根, 罗凯, 吴云, 等. 一种改进的开槽结构对叶栅性能影响的数值研究[J]. 空军工程大学学报:自然科学版, 2012, 13(5): 1-4.
[19] 胡加国, 王如根, 李坤, 等. 跨声速压气机叶尖开槽射流扩稳策略探究[J]. 推进技术, 2014, 35(11):1475-1481. (HU Jia-guo, WANG Ru-gen, LI Kun, et al. Investigation on Slot Jetting Flow Method and Mechanism of Transonic Compressor[J]. Journal of Propulsion Technology, 2014, 35(11): 1475-1481.)
[20] Ramzi M, AbdErrahmane G. Passive Control Via Slotted Blading in a Compressor Cascade at Stall Condition[J]. Journal of Applied Fluid Mechanics, 2013, 6(4): 571-580.
[21] Hu J, Wang R, Wu P, et al. Separation Control by Slot Jet in a Critically-Loaded Compressor Cascade[J/OL]. International Journal of Turbo & Jet Engines,http://www.degruyter.com/view/j/tjj.ahead-of-print/tjj-2016-0044/tjj-2016-0044.xml, 2016-7-27/2017-4-25.
[22] Hu J, Wang R, Wu P, Li F. Synthetic Separation Control Using Vortex Generator and Slot Jet in a Critically Loaded Compressor Cascade[J]. Journal of Applied Fluids Mechanics, 2017, 10(5).
[23] Kang S. Investigation of the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearance [D]. Brussel: Vrije Universiteit Brussel, 1993. * 收稿日期:2017-06-01;修订日期:2017-07-06。基金项目:国家自然科学基金(51336011)。作者简介:王如根,男,博士,教授,博士生导师,研究领域为飞/发一体化、推进系统气动热力理论与工程。 E-mail: rugen@foxmail.com(编辑:田佳莹)
|