[1] Kazmar R R. Airbreathing Hypersonic Propulsion at Pratt & Whitney-Overview[R]. AIAA 2005-3256.
[2] Heather K, Francisco P, Juan J A. Sensitivity of the Performance of a 3-Dimensional Hypersonic Inlet to Shape Defomations[R]. AIAA 2014-3228.
[3] 杨顺凯, 张堃元, 王磊. 高超声速进气道弹性压缩面自适应无源控制概念研究[J]. 推进技术, 2015, 36(11): 1633-1639. (YANG Shun-kai, ZHANG Kun-yuan, WANG Lei. Research on Self-Adaptive and Passivity-Based Control Concept of Hypersonic Adjustable inlet with Elastic Compression Surface[J]. Journal of Propulsion Technology, 2015, 36(11): 1633-1639.)
[4] Witeof Z D, Neergaard L J, Vanderwyst A S. Dynamic Fluid-Thermal-Structural Interaction Effects in Preliminary Design of High Speed Vehicles[R]. AIAA 2016-1321.
[5] McNamara J J, Friedmann P P. Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future[J]. AIAA Journal, 2011, 19(6): 1089-1122.
[6] Roger M. Aerothermoelasticity[J]. Aerospace Engineering, 1958, 17(10): 34-43.
[7] Culler A J, Mcnamara J J. Impact of Fluid-Thermal-Structural Coupling on Response Prediction of Hypersonic Skin Panels[J]. AIAA Journal, 2011, 49(11): 2393-2406.
[8] Ericsson L E, Almroth B O, Bailie J A. Hypersonic Aerothermoelastic Characteristics of a Finned Missile[J]. Journal of Spacecraft, 1979, 16(3): 187-192.
[9] Gee D J, Sipcic S R. Coupled Thermal Model for Nonlinear Panel Flutter[J]. AIAA Journal, 1999, 37(5): 642-650.
[10] Lohner R, Yang C, Cebral J. Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids[R]. AIAA 98-2419.
[11] Tran H, Farhat C. An Integrated Platform for the Simulation of Fluid-Structure-Thermal Interaction Problems[R]. AIAA 2002-1307.
[12] Haupt M C, Niesner R, Unger R, et al. Computational Aero-Structural Coupling for Hypersonic Applications[R]. AIAA 2006-3252.
[13] 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3):400-409.
[14] 李昱霖. 气动热结构多学科分析及高效优化策略研究[D]. 北京:北京理工大学, 2014.
[15] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2014.
[16] 叶坤, 叶正寅, 屈展. 高超声速进气道气动弹性的影响研究[J]. 推进技术, 2016, 37(12): 2270-2277. (YE Kun, YE Zheng-yin, QU Zhan. Effects of Aeroelasticity on Performance of Hypersonic Inlet[J]. Journal of Propulsion Technology, 2016, 37(12): 2270-2277.)
[17] 刘健, 原志超, 杨凯, 等. 高超声速飞行器多层复杂热防护结构气-固耦合快速热分析方法[J]. 推进技术, 2016, 37(2): 227-234. (LIU Jian, YUAN Zhi-chao, YANG Kai, et al. Fast Algorithm of Coupled Flow-Thermal for Multi-Layered Complex TPS of Hypersonic Aircraft[J]. Journal of Propulsion Technology, 2016, 37(2): 227-234.)
[18] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5): 1047-1051.
[19] 桂业伟, 刘磊, 杜雁霞. 热防护系统耦合分析方法与应用[J]. 现代防御技术, 2014, 42(4): 9-14.
[20] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度的影响研究[J]. 空气动力学报, 2015, 33(1): 31-35.
[21] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[22] Rendall T C S, Allen C B. Efficient Mesh Motion Using Radial Basis Functions with Data Reduction Algorithms[J]. Journal of Computational Physics, 2009, 229(7):6231-6249.
[23] Dettmer W, Peri D. A Computational Framework for Fluid-Rigid Body Interaction: Finite Element Formulation and Applications[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 1633-1666.
[24] Wieting A R. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge[R]. NASA TM-100484, 1987.
[25] Langtry R. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes[D]. Stuttgrart: Stuttgrart University, 2006.
[26] Hohn O, Gulhan A. Experimental Investigation on the Influence of Yaw Angle on the Inlet Performance at Mach 7[R]. AIAA 2010-938.
[27] 《中国航空材料手册》编委会. 中国航空材料手册(第2卷). 变形高温合金 铸造高温合金(第2版)[M]. 北京:中国标准出版社, 2002. * 收稿日期:2017-06-07;修订日期:2017-07-21。基金项目:国家自然科学基金(11472295)。作者简介:代光月,女,博士生,研究领域为高超声速气动热和热防护。E-mail: guangyuedai@foxmail.com通讯作者:曾磊,男,副研究员,研究领域为高超声速气动热和热防护。E-mail: zenglei0ok@126.com(编辑:朱立影)
|