[1] Peters N. Laminar Diffusion Flamelet Models in Nonpremixed Turbulent Combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
[2] Pierce C D. Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion[D]. California: Stanford University, 2001.
[3] 朱文中, 杨渐志, 陈靖, 等. 湍流扩散火焰局部熄火现象的大涡模拟研究[J]. 推进技术, 2015, 36(6):808-815. (ZHU Wen-zhong, YANG Jian-zhi, CHEN Jing, et al. Large Eddy Simulation of Local Extinction of Turbulent Non-Premixed Flame[J]. Journal of Propulsion Technology, 2015, 36(6): 808-815.)
[4] 范周琴, 孙明波, 刘卫东. 基于火焰面模型的超声速燃烧混合LES/RANS模拟[J]. 推进技术, 2011, 32(2): 191-196. (FAN Zhou-qin, SUN Ming-bo, LIU Wei-dong. Hybrid LES/RANS Simulation of Supersonic Combustion using Flamelet Model[J]. Journal of Propulsion Technology, 2011, 32(2): 191-196.)
[5] Pitsch H, Ihme M. An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion[R]. AIAA 2005-557.
[6] Van Oijen J A. Flamelet-Generated Manifolds: Development and Application to Premixed Laminar Flames[D]. Eindhoven: Technische Universiteit Eindhoven, 2002.
[7] Ramaekers W J S. Development of Flamelet Generated Manifolds for Partially-Premixed Flame[D]. Eindhoven: Technische Universiteit Eindhoven, 2011.
[8] 杨金虎. FGM预混及部分预混燃烧模型研究与应用[D]. 北京:中国科学院工程热物理研究所, 2012.
[9] Ravikanti M, Hossain M, Malalasekera W. Laminar Flamelet Model Prediction of NOx Formation in a Turbulent Bluff-Body Combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 223(1): 41-54.
[10] Ihme M, Pitsch M. Modeling of Radiation and Nitric Oxide Formation in Turbulent Nonpremixed Flames Using a Flamelet/Progress Variable Formulation[J]. Physics of Fluids, 2008, 20: 1-20.
[11] Godel G, Domingo P, Vervisch L. Tabulation of NOx Chemistry for Large-Eddy Simulation of Non-Premixed Turbulent Flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1556-1561.
[12] El-Asrag H A, Iannetti A C, Apte S V. Large Eddy Simulation for Radiation-Spray Coupling for a Lean Direct injector Combustor[J]. Combustion and Flame, 2014, 161(2): 510-524.
[13] Ketelheun A, Olbricht C, Hahn F, et al. NO Prediction in Turbulent Flames Using LES/FGM with Additional Transport Equations[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2975-2982.
[14] Dally B B, Masri A R, Barlow R S, et al. Instantaneous and Mean Compositional Structure of Bulff-Body Stabilized Nonpremixed Flames[J]. Combustion and Flame, 1998, 114(1-2): 119-148.
[15] Bowman C T, Hanson R K, Davidson D F, et al. High Temperature Reaction Kinetics Relevant to Nitramine Combustion[EB/OL]. http://www. me. berkeley. edu/gri_mech.
[16] Bongers H. Analysis of Flamelet-Based Methods to Reduce Chemical Kinetics in Flame Computations[D]. Eindhoven: Technische Universiteit Eindhoven, 2005.
[17] Kashir B, Tabejamaat S, Jalalatian N. A Numerical Study on Combustion Characteristics of Blended Methane-Hydrogen Bluff-Body Stabilized Swirl Diffusion Flames[J]. International Journal of Hydrogen Energy, 2015, 40(18): 6243-6258.
[18] Lien F S, Liu H, Chui E, et al. Development of an Analytical β-Function PDF Integration Algorithm for Simulation of Non-Premixed Turbulent Combustion[J]. Flow, Turbulence and Combustion, 2009, 83(2): 205-226.
[19] Van Oijen J A, De Goey L P H. Predicting NO Formation with Flamelet Generated Manifold[C]. Stockholm: Proceedings of the European Combustion Meeting, 2009.
[20] Boucher A, Bertier N, Dupoirieux F. A Method to Extend Flamelet Generated Manifolds for Prediction of NOx and Long Time Scale Species with Tabulated Chemistry[J]. Institute Journal of Sustainable Aviation, 2014, 1(2): 181-202.
[21] Lee K W, Choi D H. Analysis of NO Formation in High Temperature Diluted Air Combustion in a Coaxial Jet Flame Using an Unsteady Flamelet Model[J]. International Journal of Heat Mass Transfer, 2009, 52(5-6): 1412-1420.
[22] Kim T H, Park J W, Park H Y, et al. Chemical and Radiation Effects on Flame Extinction and NOx Formation in Oxy-Methane Combustion Diluted with CO2[J]. Fuel, 2016, 177(1): 235-243.
[23] Shih T H, Liou W W, Shabbir A, et al. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Computers Fluids, 1995, 24(3): 227-238.(编辑:史亚红) * 收稿日期:2017-04-27;修订日期:2017-06-16。作者简介:唐军,男,博士生,研究领域为航空发动机燃烧室数值计算。E-mail: tangjun207@163.com
|