[1] Lewis S, Barker B, Bons J P, et al. Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes[J]. Journal of Turbomachinery, 2011, 133(3):921-928.
[2] Rajan S, Raghavan J K. Coal Mineral Matter Transformation During Combustion and Its Implications for Gas Turbine Blade Erosion[J]. Computers & Structures, 1990, 151(45): 49-57.
[3] Walsh P M, Sayre A N, Loehden D O, et al. Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth[J]. Progress in Energy & Combustion Science, 1990, 16(4): 327-345.
[4] Hamed A, Tabakoff W C, Wenglarz R V. Erosion and Deposition in Turbomachinery[J]. Journal of Propulsion & Power, 2014, 22(2): 350-360.
[5] Wenglarz R A, Fox R G Jr. Physical Aspects of Deposition from Coal Water Fuels under Gas Turbine Conditions[J]. Journal of Engineering for Gas Turbines & Power, 1989, 112(1): 9-14.
[6] Jensen J W, Squire S W, Bons J P, et al. Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility[J]. Journal of Turbomachinery, 2005, 127(3): 462-470.
[7] Bonilla C, Clum C, Lawrence M, et al. The Effect of Film Cooling on Nozzle Guide Vane Deposition[C]. San antonio: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
[8] Crosby J M, Lewis S, Bons J P, et al. Effects of Temperature and Particle Size on Deposition in Land Based Turbines[J]. Journal of Engineering for Gas Turbines & Power, 2008, 130(5): 819-825.
[9] Ai W, Laycock R G, Rappleye D S, et al. Effect of Particle Size and Trench Configuration on Deposition from Fine Coal Flyash near Film Cooling Holes[J]. Energy & Fuels, 2011, 25(3): 561-571.
[10] Prenter R, Ameri A, Bons J P. Deposition on a Cooled Nozzle Guide Vane with Non-Uniform Inlet Temperatures[C]. Polansky:ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015.
[11] Lawson S A, Thole K A. The Effects of Simulated Particle Deposition on Film Cooling[C]. Orlando: ASME Turbo Expo 2009: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2009.
[12] Lawson S A, Thole K A. Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling[J]. Journal of Turbomachinery, 2011, 133(5): 157-172.
[13] Albert J E, Keefe K J, Bogard D G. Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge[J]. Journal of Turbomachinery, 2009, 131(5): 597-626.
[14] Davidson F T, Kistenmacher D A, Bogard D G, et al. A Study of Deposition on a Turbine Vane with a Thermal Barrier Coating and Various Film Cooling Geometries[J]. Journal of Turbomachinery, 2012, 134(4):1769-1780.
[15] 周君辉, 张靖周. 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报, 2013, 34(11): 2492-2499.
[16] Dring R P, Caspar J R, Suo M. Particle Trajectories in Turbine Cascades[J]. Journal of Energy, 1979, 3(3):161-166.
[17] 朱惠人, 向安定, 许都纯, 等. 涡轮叶片表面气膜冷却效率的实验研究[J]. 推进技术, 2003, 24(6): 528-531. (ZHU Hui-ren, XIANG An-ding, XU Du-chun, et al. An Experimental Investigation of Film Cooling Effectiveness on the Surface of Turbine Blade[J]. Journal of Propulsion Technology, 2003, 24(6): 528-531.)
[18] 李广超, 朱惠人, 白江涛, 等. 气膜孔布局对前缘气膜冷却效率影响的实验[J]. 推进技术, 2008, 29(2):153-157. (LI Guang-chao, ZHU Hui-ren, BAI Jiang-tao, et al. Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J]. Journal of Propulsion Technology, 2008, 29(2):153-157.) * 收稿日期:2017-05-07;修订日期:2017-06-15。基金项目:国家自然科学基金委员会与中国民用航空局联合资助项目(U1633113);天津市应用基础与前沿技术研究青年 项目(14JCQNJC06800)。作者简介:杨晓军,男,博士生,副教授,研究领域为燃气轮机叶片气膜冷却技术。E-mail: xiaojunyoung@hotmail.com(编辑:史亚红)
|