[1] Bil C, Massey K, Abdullah E J. Wing Morphing Control with Shape Memory Alloy Actuators[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 879-898.
[2] Hartl D J, Lagoudas D C. Aerospace Applications of Shape Memory Alloys[J]. Journal of Aerospace Engineering, 2007, 221(4): 535-552.
[3] Mohammad T, Jeng-jong R, Chuh M. Thermal Post-buckling and Aero Elastic Behavior of Shape Memory Alloy Reinforced Plates[J]. Smart Materials and Structures, 2002, 11(2): 297-307.
[4] Kudva J N. Overview of the DARPA Smart Wing Project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267.
[5] Hartl D J, Lagoudas D C, Calkins F T, et al. Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I. Thermomechanical Characterization[J]. Smart Materials and Structures, 2010, 19(1): 15-20.
[6] 任德新, 张大义, 何易峰, 等. 带颗粒型金属橡胶夹层阻尼结构的振动响应研究[J]. 推进技术, 2015, 36(1): 124-129. (REN De-xin, ZHANG Da-yi, HE Yi-feng, et al. Vibration Response Investigation on Structures with Particle Metal Rubber Damper Fillings[J]. Journal of Propulsion Technology, 2015, 36(1): 124-129.)
[7] Dunne J P, Hopkins M A, Baumann E W, et al. Overview of the Sampson Smart Inlet[M]. Los Angeles: SPIE Digital Library, 1999: 380-390.
[8] Caldwell N, Gutmark E, Ruggeri R. Heat Transfer Model for Blade Twist Actuator System[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(2): 352-360.
[9] Hong J, Yan W. Experimental Investigation on the Vibration Tuning of a Shell with a Shape Memory Alloy Ring[J]. Smart Materials & Structures, 2015, 24(10).
[10] 王永军. 含形状记忆合金复合结构振动特性研究[D]. 哈尔滨:哈尔滨工程大学, 2010.
[11] 于平超, 马艳红, 张大义, 等. 具有局部非线性刚度的复杂转子系统动力学模型及振动特性分析[J]. 推进技术, 2016, 37(12): 2343-2351. (YU Ping-chao, MA Yan-hong, ZHANG DA-yi, et al. Dynamic Model and Vibration Characteristic Analysis on Complex Rotor System with Local Nonlinear Stiffness[J]. Journal of Propulsion Technology, 2016, 37(12): 2343-2351.)
[12] Leary M, Schiavone F, Subic A. Lagging for Control of Shape Memory Alloy Actuator Response Time[J]. Material and Design, 2010, 31(4): 2124-2128.
[13] Wang L X, Melnik V N R. Nonlinear Dynamics of Shape Memory Alloy Oscillators in Tuning Structural Vibration Frequencies[J]. Mechatronics, 2012, 22(12): 1085-1096.
[14] Williams A K, Chiu T C G, Bernhard J R. Nonlinear Control of a Shape Memory Alloy Adaptive Tuned Vibration Absorber[J]. Journal of Sound and Vibration, 2005, 288(12): 1131-1155.
[15] Abeyaratne R, Knowles J K. On the Driving Traction Acting on a Surface of Strain Discontinuity in a Continuum[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(3): 345-360.
[16] Ball J M, James R D. Fine Phase Mixtures as Minimizers of Energy[J]. Archive for Rational Mechanics and Analysis, 1987, 100(1): 13-52.
[17] Gao X J, Huang M S, Brinson L C. A Multivariant Micromechanical Model for SMAs Part I: Crystallographic Issues for Single Crystal Model[J]. International Journal of Plasticity, 2000, 16(10-11): 1345-1369.
[18] Huang M S, Gao X J, Brinson L C. A Multivariant Micromechanical Model for SMAs Part II: Polycrystal Model[J]. International Journal of Plasticity, 2000, 16(10-11): 1371-1390.
[19] Bertacchini O W, Lagoudas D C, Patoor E. Thermomechanical Transformation Fatigue of TiNiCu SMA Actuators under a Corrosive Environment, Part I: Experimental Results[J]. International Journal of Fatigue, 2009, 31(10): 1571-1578.
[20] Hartl D J, Solomou A, Lagoudas D C, et al. Phenomenological Modeling of Induced Transformation Anisotropy in Shape Memory Alloy Actuators[C]. San Diego: 2012 SPIE Smart Structures/NDE Conference, 2012, 8342(M).
[21] Auriccchio F, Petrini L. Improvements and Algorithmical Considerations on a Recent Three-Dimensional Model Describing Stress-Induced Solid Phase Transformations[J]. International Journal for Numerical Methods in Engineering, 2002, 55(11): 1255-1284.
[22] Peng X, Pi W, Fan J. A Micro Structure-Based Constitutive Model for the Pseudoelastic Behavior of NiTiSMAs[J]. International Journal of Plasticity, 2008, 24(6): 966-990.
[23] 杨鑫, 洪杰, 马艳红, 等. SMA智能梁结构振动控制试验研究[J]. 航空学报, 2015, 36(7): 2251-2259.
[24] 郭大智, 任瑞波. 层状粘弹性体系力学[M]. 哈尔滨:哈尔滨工业大学出版社, 2001.
[25] 胡梦佳, 李书, 王远达. 主动约束层阻尼板结构动力学建模[J]. 振动、测试与诊断, 2013, 33(s1): 198-201.
[26] 周云. 粘弹性阻尼减震结构设计[M]. 武汉:武汉理工大学出版社, 2006. * 收稿日期:2017-05-24;修订日期:2017-07-28。通讯作者:洪杰,男,博士,教授,研究领域为航空发动机结构强度、振动与可靠性。E-mail: Hongjie_BUAA@126.com
|