[1] 张有宏, 吕国志, 李仲, 等. 铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J]. 航空学报, 2007, 28(2): 332-335.
[2] Ishihara S, Nan Z Y, McEvily A J, et al. On the Initiation and Growth Behavior of Corrosion Pits During Corrosion Fatigue Process of Industrial Pure Aluminum[J]. International Journal of Fatigue, 2008, 30(11): 1659-1668.
[3] Kimberli Jones, David W Hoeppner. The Interaction between Pitting Corrosion, Grain Boundaries, and Constituent Particles During Corrosion Fatigue of 7075-T6 Aluminum Alloy[J]. International Journal of Fatigue, 2009, 31(3): 686-692.
[4] 李旭东, 穆志韬, 刘治国, 等. 预腐蚀铝合金材料裂纹萌生寿命评估[J]. 装备环境工程, 2012, 9(5): 24-28.
[5] Mansor N I I, Abdullah S, Ariffin A K, et al. A Review of the Fatigue Failure Mechanism of Metallic Materials Under a Corroded Environment[J]. Engineering Failure Analysis, 2014, 42 (4): 353-365.
[6] Pao P S, Gill S J, Feng C R. On Fatigue Crack Initiation from Corrosion in 7075-T7351 Aluminum Alloy[J]. Scripta Materialia, 2000, 43(4): 391-396.
[7] Kvander Walde, Hillberry B M. Characterization of Pitting Damage and Prediction of Remaining Fatigue Life[J]. International Journal of Fatigue, 2008, 30(3):106-118.
[8] Kvander Walde. Corrosion-Nucleated Fatigue Crack Growth[D]. USA: Purdue University, 2005.
[9] Kvander Walde, Hillberry B M. Initiation and Shape Development of Corrosion-Nucleated Fatigue Cracking[J]. International Journal of Fatigue, 2007, 29(10):1269-1281.
[10] Saravanan Arunachalam, Scott Fawaz. Test Method for Corrosion Pit-to-Fatigue Crack Transition from a Corner of Hole in 7075-T651 Aluminum Alloy[J]. International Journal of Fatigue, 2016, 91(5): 50-58.
[11] Sigmund Kyrre As. Fatigue Life Prediction of an Aluminum Alloy Automotive Component Using Finit Element Analysis of Surface Topography[D]. Norway: Norwegian University, 2006.
[12] 孙辽, 姚卫星. LC4CS铝合金预腐蚀形貌与剩余寿命评估[J]. 机械强度, 2014, 36(2): 273-279.
[13] 李旭东, 王玉刚, 苏维国, 等. 预腐蚀LY12CZ铝合金疲劳裂纹扩展行为研究[J]. 青岛科技大学学报, 2013, 34(2): 182-187.
[14] 穆志韬. 海军飞机结构腐蚀损伤规律研究及使用寿命研究[D]. 北京:北京航空航天大学, 2002.
[15] 刘道新. 材料的腐蚀与防护[M]. 西安:西北工业大学出版社, 2006.
[16] 刘治国, 穆志韬, 边若鹏. LD2铝合金加速腐蚀蚀坑演化的ARIMA模型研究[J]. 机械强度, 2012, 34(4): 608-614.
[17] 王逾涯, 韩恩厚, 孙祚东, 等. LY12CZ铝合金在EXCO溶液中的腐蚀行为研究[J]. 装备环境工程, 2005, 2(1): 20-24.
[18] Kvander Walde, Brockenbrough J R, Craig B A, et al. Multiple Fatigue Crack Growth in Pre-Corroded 2024-T3 Aluminum[J]. International Journal of Fatigue, 2005, 27(8): 1509-1518.
[19] Paul Nolan Clark. The Transition of Corrosion Pitting to Surface Fatigue Crack in 2024-T3 Aluminum Alloy[D].Utah: University of Utah, 2001.
[20] DuQuesnay D L, Underhill P R, Britt H J. Fatigue Crack Growth from Corrosion Damage in 7075-T6511 Aluminium Alloy under Aircraft Loading[J]. International Journal of Fatigue, 2003, 25(2): 371-377.
[21] Sankaran K K, Perez R, Jata K V. Effects of Pitting Corrosion on the Fatigue Behavior of Aluminum Alloy 7075-T6: Modeling and Experimental Studies[J]. Materials Science and Engineering, 2001, A297(1): 223-229.
[22] Sergey Bogdanov. Fatigue Life Prediction Based on the Advanced Fatigue Crack Growth Model and the Monte-Carlo Simulation Method[D]. Waterloo: Universtiy of Waterloo, 2014.
[23] Pan Shi, Sankaran Mahadevan. Damage Tolerance Approach for Probabilistic Pitting Corrosion Fatigue Life Prediction[J]. Engineering Fracture Mechanics, 2001, 68(1): 1493-1507.
[24] Newman J C Jr, Phillips E P, Swain M H. Fatigue-Life Prediction Methodology Using Small-Crack Theory[J]. International Journal of Fatigue, 1999, 21(9): 109-119.
[25] Chen G S, Gao M, Wei R P. Microconstituent-Induced Pitting Corrosion in Aluminum Alloy 2024-T3[J]. Corrosion, 1996, 52(1): 8-15.
[26] Harlow D G, Nardiello J, Payne J. The Effect of Constituent Particles in Aluminum Alloys on Fatigue Damage Evolution: Statistical Observations[J]. International Journal of Fatigue, 2010, 32(2): 505-511.
[27] Harlow D G. Constituent Particle Clustering and Pitting Corrosion the Minerals[J]. Metals & Materials Society and ASM International, 2012, 43A(8): 2832-2837.
[28] James C Newman, Jr Balkrishna S Annigeri. Fatigue-Life Prediction Method Based on Small-Crack Theory in an Engine Material[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3): 1-8.
[29] 商体松, 赵明, 陈养惠. 基于三参数幂函数的低周疲劳寿命预测方法研究[J]. 推进技术, 2015, 36(6):907-911. (SHANG Ti-song, ZHAO Ming, CHEN Yang-hui. Low Cycle Fatigue Life Prediction Method Based on Three-Parameter Power Function[J]. Journal of Propulsion Technology, 2015, 36(6): 907-911.)
[30] 魏大盛, 王延荣. 粉末冶金涡轮盘裂纹扩展寿命分析[J]. 推进技术, 2008, 29(6): 753-758. (WEI Da-sheng, WANG Yan-rong. Life Methodology of Crack Propagation in Powder Metallurgy Turbine Disk[J]. Journal of Propulsion Technology, 2008, 29(6): 753-758.) * 收稿日期:2017-06-07;修订日期:2017-08-01。通讯作者:刘治国,男,博士生,讲师,研究领域为飞机结构腐蚀疲劳寿命分析。E-mail: qdnuaalzg@163.com(编辑:朱立影)
|