[1] Lee J. Large-Amplitude Plate Vibration in an Elevated Thermal Environment[R]. WL-TR-92-3049.
[2] Lee J. Displacement and Strain Histograms of Thermally Buckled Composite Plates in Random Vibration[C]. Salt Lake City: 37th Structures, Structural Dynamics, and Materials Conference, 1996.
[3] Lee J. Displacement and Strain Statistics of Thermally Buckled Plates[C]. St.Louis: 40th Structures, Structural Dynamics, and Materials Conference and Exhibit, 1999.
[4] Vaicaitis R. Nonlinear Response and Sonic Fatigue of National Aerospace Space Plane Surface Panels[J]. Journal of Aircraft, 1994, 31(1): 10-18.
[5] Vaicaitis R, Kavallieratos P A. Nonlinear Response of Composite Panels to Random Excitation[C]. New York: 34th Structures, Structural Dynamics and Materials Conference, 1993.
[6] Schneider C W. Acoustic Fatigue of Aircraft Structures at Elevated Temperatures[R]. AFFDL-TR-73-155.
[7] Rizzi S A, Muravyov A A. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes[R]. NASA TP-2002-211761.
[8] 张大义, 刘烨辉, 洪杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5): 768-773. (ZHANG Da-yi, LIU Ye-hui, HONG Jie, et al. Investigation on Dynamical Modeling and Vibration Characteristics for Aero Engine[J]. Journal of Propulsion Technology, 2015, 36(5): 768-773.)
[9] 周远方. 虚拟振动环境试验的初步尝试[J]. 航天器环境工程, 2002, 19(4): 27-43.
[10] Ricci S, Peeters B, Debille J, et al. Virtual Shaker Testing: A Novel Approach for Improving Vibration Test Performance[C]. Leuven: International Conference on Noise and Vibration Engineering, 2008.
[11] Ng C F, Clevenson S A. High-Intensity Acoustic Tests of a Thermally Stressed Plate[J]. Journal of Aircraft, 1991, 28(4): 275-281.
[12] Klenke S, Lauffer J, Gregorg D, et al. The Vibration Virtual Environment for Test Optimization(VETO)[M]. United States: Sandia Report, 1996.
[13] 刘世杰, 林志勇, 孙明波, 等. 旋转爆震波发动机二维数值模拟[J]. 推进技术, 2010, 31(5): 634-640. (LIU Shi-jie, LIN Zhi-yong, SUN Ming-bo, et al. Two-Dimensional Numerical Simulation of Rotating Detonation Wave Engine[J]. Journal of Propulsion Technology, 2010, 31(5): 634-640.)
[14] Sha Y D, Wei J, Gao Z J. Nonlinear Characteristics of Thin-Walled Structures under Thermo-Acoustic Loadings[J]. Acta Aeronauticaet Astronautica Sinica, 2013, 34(6): 1336-1346.
[15] 沙云东, 魏静, 高志军, 等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击, 2013, 32(10): 162-166.
[16] 沙云东, 郭小鹏, 张军. 基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J]. 振动与冲击, 2010, 29(1): 162-165.
[17] 郭小鹏, 沙云东, 柏树生, 等, 基于雨流计数法和功率谱密度法的随机声疲劳应用研究[J]. 航空发动机, 2010, 36(5): 27-31.
[18] 沙云东, 王建, 赵奉同, 等. 热声激励下高温合金薄壁结构振动响应试验验证与疲劳寿命预测[J]. 推进技术, 2017, 38(8): 1-10. (SHA Yun-dong, WANG Jian, ZHAO Feng-tong, et al. Vibration Responses Experimental Verification and Fatigue Life Prediction of Superalloy Thin-Walled Structures Under Thermal-Acoustic Excitations[J]. Journal of Propulsion Technology, 2017, 38(8): 1-10.) * 收稿日期:2017-06-19;修订日期:2017-07-24。基金项目:航空基础科学基金资助基金项目(20151554002)。通讯作者:沙云东,男,博士,教授,研究领域为航空发动机强度振动及噪声。E-mail: ydsha2003@sina.vip.com(编辑:梅瑛)
|