[1] Richard R Hofer. High-Specific Impulse Hall Thrusters,Part 2: Efficiency Analysis[J]. Journal of Propulsion and Power, 2015, 22(4): 732-740.
[2] James Joseph Szabo. Fully Kinetic Numerical Modeling of a Plasma Thruster [D]. Cambridge:Massachusetts Institute of Technology, 2001.
[3] 吴汉基, 蒋远大, 张志远. 电推进技术的应用与发展趋势[J]. 推进技术, 2003, 24(5): 385-392. (WU Han-ji , JIANG Yuan-da , ZHANG Zhi-yuan. Application and Development Trend of Electric Propulsion Technology[J]. Journal of Propulsion Technology, 2003, 24(5): 385-392.)
[4] Robert G Jahn, Edgar Y Choueiri. Electric Propulsion[J]. Encyclopedia of Physical Science and Technology, 2003, 5(3): 125-141.
[5] John W Dunning, Jr John A Hamley, Robert S, et al. An Overview of Electric Propulsion Activities at NASA[R]. AIAA 2004-3328.
[6] Gonzalez J, Saccoccia G. ESA Electric Propulsion Activities[R]. IEPC-2011-329.
[7] Brown, Daniel L. Evaluation of Ion Collection Area in Faraday Probes[J]. Review of Scientific Instruments, 2010, 81(6).
[8] Kronhaus, Igal. Investigation of Physical Processes in CAMILA Hall Thruster Using Electrical Probes[J]. Journal of Physics D Applied Physics, 2012, 45(45): 176-184.
[9] Grimaud L. Perturbations Induced by Electrostatic Probe in the Discharge of Hall Thrusters[J]. Review of Scientific Instruments, 2016, 87(4).
[10] Dannenmayer K. Time-Resolved Measurement of Plasma Parameters in the Far-Field Plume of a Low-Power Hall Effect Thruster[J]. Plasma Sources Science & Technology, 2012, 21(5): 1020-1027.
[11] Youbong Lim. Observation of a High-Energy Tail in Ion Energy Distribution in the Cylindrical Hall Thruster Plasma[J]. Physics of Plasmas, 2014, 21(10).
[12] Mazouffre S. Ionization and Acceleration Processes in a Small, Variable Channel Width, Permanent-Magnet Hall Thruster[J]. Journal of Physics D Applied Physics, 2012, 45(18).
[13] Zhang Z. Calibrating Ion Density Profile Measurements in Ion Thruster Beam Plasma[J]. Review of Scientific Instruments, 2016 , 87(11).
[14] Seo, Mihui. Radial Scale Effect on the Performance of Low-Power Cylindrical Hall Plasma Thrusters[J]. Applied Physics Letters, 2013 , 103(13).
[15] 魏建国. 霍尔推力器羽流区和通道内的光谱诊断[D]. 哈尔滨:哈尔滨工业大学, 2007.
[16] Murat Celik, Oleg Batishchev, Manuel Martinez-Sanchez. Use of Emission Spectroscopy for Real-Time Assessment of Relative Wall Erosion Rate of BHT-200 Hall Thruster for Various Regimes of Operation[J]. Vacuum, 2010 , 84(9): 1085-1091.
[17] 康小录, 汪兆凌, 汪南豪. 稳态等离子体推力器低功率工作模式实验研究[J]. 推进技术, 2001, 22(4):326-328. (KANG Xiao-lu, WANG Zhao-ling, WANG Nan-hao. Experimental Investigation on Stationary Plasma Thruster(SPT)Operated at Lower Power Mode[J]. Journal of Propulsion Technology, 2001, 22(4): 326-328.)
[18] Michael R Nakles, Ryne R Barry. A Plume Comparison of Xenon and Krypton Propellant on a 600W Hall Thruster[R]. OMB No.0704-0188, 2009.
[19] 张尊. 电推力器等离子体Langmuir探针诊断理论与应用[D]. 北京:北京航空航天大学, 2015.
[20] Bryan M Reid, Alec D Gallimore. Langmuir Probe Measurements in the Discharge Channel of a 6kW Hall Thruster [R]. AIAA 2008-4920.
[21] Karabadzhak G F, Anfimov N A. Studying of Atomic and Molecular Interaction Processes in Rarified Hypervelocity Expanding Flows by Methods of Emissive Spectroscopy[R]. ISTC 00-7046, 2004.
[22] Yassir Azziz. Experimental and Theoretical Characterization of a Hall Thruster Plume[D]. Cambridge:Massachusetts Institute of Technology, 2007.
[23] Jared M Ekholm, William A Hargus. Plume Characteristics of the Busek 600W Hall Thruster[R]. AIAA 2006-465.(编辑:梅瑛) * 收稿日期:2017-06-01;修订日期:2017-08-01。作者简介:卢昕,男,硕士生,研究领域为等离子体诊断技术。E-mail: luxin11151196@126.com通讯作者:汤海滨,男,博士,教授,研究领域为空间电推进技术。E-mail: thb@buaa.edu.cn
|