[1] Micka D,Driscoll J F.Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flameholder[J].Proceedings of the Combustion Institute,2009,32(2): 2397-2404.
[2] Varatharajan B,Williams F A.Ethylene Ignition and Detonation Chemistry,Part 2: Ignition Histories and Re.duced Mechanisms[J]. Journal of Propulsion and Pow. er,2002,18(2): 352-362.
[3] Masuya G,Komuro T,Murakami A,et al.Ignition andCombustion Performance of Scramjet Combustors withFuel Injection Struts[J].Journal of Propulsion and Pow.er,1995,11(2): 301-307.
[4] Busa K M,Rice B,Mcdaniel J C,et al.Scramjet Com.bustion Efficiency Measurement via Tomographic Ab.sorption Spectroscopy and Particle Image Velocimetry[J].AIAA Journal,2016,54(8): 2463-2471.
[5] Kang S H,Lee Y J,Yang S S,et al.Cowl and CavityEffects on Mixing and Combustion in Scramjet Engines[J].Journal of Propulsion and Power,2011,27(6): 1169-1177.
[6] Starikovskiy A,Aleksandrov N L.Plasma-Assisted Ig.nition and Combustion[J].Progress in Energy and Com. bustion Science,2013,39(1): 61-110.
[7] Ju Y,Sun W.Plasma Assisted Combustion: Dynamics and Chemistry[J].Progress in Energy and Combustion Science,2015,48(1): 21-83.
[8] Wagner T C,O'Brien W F,Northam G B,et al.Plasma Torch Igniter for Scramjets[J].Journal of Propulsion and Power,1989,5(5): 548-554.
[9] Masuya G,Takita K,Takahashi K.Effects of Airstream Mach Number on H2 /N2 Plasma Igniter[J].Journal of Propulsion and Power,2002,18(3): 679-685.
[10] Takita K,Shishido K,Kurumada K.Ignition in a Super.sonic Flow by a Plasma Jet of Mixed Feedstock IncludingCH4[J].Proceedings of the Combustion Institute,2011, 33(2): 2383-2389.
[11] Watanabe J,Abe N,Takita K.Effect of a Rearward- Facing Step on Plasma Ignition in Supersonic Flow[J].Journal of Spacecraft & Rockets,2009,46(3): 561-567.
[12] Leonov S B,Yarantsev D A.Mechanisms of Fuel Igni.tion by Electrical Discharge in High-Speed Flow[R].AIAA 2006-7097.
[13] Leonov S B,Yarantsev D A,Gromov V,et al.Mecha. nisms of Flow Control by Near-Surface Electrical Dis.charge Generation[R].AIAA 2005-780.
[14] 段立伟,洪延姬 .等离子体火炬喷射频率对超声速燃烧特性的影响研究[ J].推进技术, 2015,36(10): 1539-1546.(DUAN Li-wei,HONG Yan-ji.Effects ofPlasma Torch Jet Frequency on Supersonic CombustionCharacteristics[J].Journal of Propulsion Technology, 2015,36(10): 1539-1546.)
[15] 李飞,余西龙,顾洪斌,等 .超声速气流中煤油射流的等离子体点火实验[ J].航空动力学报, 2012,27 (4): 824-831.
[16] 韦宝禧,欧东,闫明磊,等 .超燃燃烧室等离子体点火和火焰稳定性能[ J].北京航空航天大学学报, 2012,38(12): 1572-1576.
[17] 宋振兴,何立明,张建邦,等 .超音速等离子体点火过程的三维数值模拟[ J].强激光与粒子束, 2012,24 (11): 2746-2750.
[18] Zhou S,Nie W,Che X.Numerical Investigation of In.fluence of Quasi-DC Discharge Plasma on Fuel Jet in Sc.ramjet Combustor[J].IEEE Transactions on Plasma Sci.ence,2015,43(3): 896-905.
[19] 周思引,车学科,聂万胜,等 .等离子体对超燃燃烧室凹腔性能影响的数值研究[ J].推进技术, 2013,34 (7): 950-955.(ZHOU Si-yin,CHE Xue -ke,NIE Wan-sheng,et al.Numerical Study of Effects of Plasmaon Performance of Scramjet Combustor Cavity[J].Jour.nal of Propulsion Technology,2013,34(7): 950-955.)
[20] 郑直,聂万胜,张政,等 .脉冲等离子体对超燃凹腔燃料喷流的影响[ J].红外与激光工程, 2017,46 (2): 37-42.
[21] Roth J R.Aerodynamic Flow Acceleration Using Para.electric and Peristaltic Electrohydrodynamic Effects of aOne Atmosphere Uniform Glow Discharge Plasma[J].Physics of Plasmas,2003,10(5): 2117-2126.
[22] Leonov S B,Yarantsev D.Near-Surface Electrical Dis. charge in Supersonic Airflow: Properties and Flow Con.trol[J].Journal of Propulsion and Power,2008,24(6): 1168-1181.
[23] 秦曾衍,左公宁,王永荣,等 .高压强脉冲放电及其应用[ M].北京:北京工业大学出版社, 2000: 352-355.
[24] Rajasekaran A,Babu V.Numerical Simulation of Three Dimensional Reacting Flow in a Model Supersonic Com.bustor[J].Journal of Propulsion and Power,2004,22 (4): 820-827.
[25] Baurle R,Mathur T,Gruber M,et al.A Numerical and Experimental Investigation of a Scramjet Combustor forHypersonic Missile Applications[C].USA: 34th AIAA / ASME/SAE/ASEE Joint Propulsion Conference and Exhib.it Cleveland,1998.
[26] 周思引 .超燃冲压发动机等离子体助燃 /稳燃研究[D].北京:装备学院, 2014.(编辑:张荣莉) * 收稿日期: 2017-06-30;修订日期: 2017-08-26。基金项目:国家自然科学基金( 11205244;91441123)。通讯作者:郑直,男,博士生,研究领域为等离子体助燃技术。 E-mail: dymzz1166@163.com
|