[1] 刘建平. 国外固体推进剂技术现状和发展趋势[J]. 固体火箭技术, 2010, 23(1): 22-26.
[2] 王宝成, 李鑫, 赵凤起, 等. 凝胶推进剂研究进展[J]. 化学推进剂与高分子材料, 2015, 13(1):1-6.
[3] Geoffrey A Landis. Mars Rocket Vehicle Using in Situ Propellants[J]. Journal of Spacecraft & Rockets, 2001, 38(5): 730-735.
[4] Coons S, Curtis R, Mclain C, et al. In Situ Propellant Production Strategies and Applications for a Low-Cost Mars Sample Return Mission[R]. AIAA 95-2796.
[5] Szabo J, Miller T, Herr J, et al. Magnesium Bipropellant Rockets for Martian Ascent Vehicles[R]. AIAA 2011-5834.
[6] Foote J P, Litchford R J. Powdered Magnesium—Carbon Dioxide Rocket Combustion Technology for in Situ Mars Propulsion[R]. NASA/TP 2007-215077.
[7] Goroshin S, Higgins A, Lee J. Powdered Magnesium-Carbon Dioxide Propulsion Concepts for Mars Missions[R]. AIAA 99-2408.
[8] 蔡玉鹏, Mg/CO2粉末火箭发动机燃烧室初步设计及燃烧组织研究[D]. 西安:西北工业大学, 2017.
[9] Loftus H, Montanino L, Bryndle R. Powder Rocket Feasibility Evaluation[R]. AIAA 72-1162.
[10] Loftus H, Marshall D, Montanino L N. Powder Rocket Feasibility Evaluation[R]. NTIS AD-76-9283.
[11] 李悦, 胡春波, 孙海俊, 等. 粉末火箭发动机燃烧室燃烧流动特性研究[J]. 固体火箭技术, 2014, (6):792-796.
[12] Li Y, Hu C, Deng Z, et al. Experimental Study on Multiple-Pulse Performance Characteristics of Ammonium Perchlorate/Aluminum Powder Rocket Motor[J]. Acta Astronautica, 2016, 133: 455-466.
[13] Shorr M, Reinhardt T F. Feasibility of a Fluidized Powder Demand-Mode Gas Generator[J]. Journal of Spacecraft & Rockets, 1974, 11(1): 29-32.
[14] Shafirovich E, Varma A. Metal-CO2 Propulsion for Mars Missions: Current Status and Opportunities[J]. Journal of Propulsion & Power, 2008: 385-394.
[15] Wickman J. In-Situ Mars Rocket and Jet Engines Burning Carbon Dioxide[R]. AIAA 99-2409.
[16] 张胜敏, 杨玉新, 胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术, 2015, (3): 347-350.
[17] Michael L Meyer. Design Issues for Lunar in Situ Aluminum/Oxygen Propellant Rocket Engines[R]. AIAA 92-1185.
[18] 邓哲, 胡春波, 卢子元, 等, Metal/N2O粉末火箭发动机实验研究[J]. 固体火箭技术, 2015, (2): 220-224.
[19] Healy R. The Black Powder Rocket Charge: Its Military Uses[J]. Astronautics, 1942, 12(53): 3-10.
[20] Parsons J W. Experiments with Powder Motors for Rocket Propulsion by Successive Impulses[J]. Astronautics, 1939, 9(43): 4-11.
[21] Gordon Robert. Powder Rocket Tests of the C.R.S.: Initial Experiments of the California Group[J]. Astronautics, 1941, 11(51): 10-12.
[22] Brandenberger E M, Ernst T. Powder Propellant Rocket Motors[P]. US: 2957307, 1960.
[23] Precoul M. Powder-Fuelled Rocket[P]. US: 3234878 A, 1966.
[24] 马利锋, 杨玉新, 霍东兴, 等. 大速差射流装置对固体粉末冲压发动机燃烧性能的影响分析[J]. 中国科学:技术科学, 2015, (1): 21-24.
[25] Li C, Hu C, Xin X, et al. Experimental Study on the Operation Characteristics of Aluminum Powder Fueled Ramjet[J]. Acta Astronautica, 2016, 129: 74-81.
[26] 胡春波. 粉末燃料冲压发动机研究进展[J]. 固体火箭技术, 2017, 40(3): 269-276.
[27] 申慧君. 粉末燃料冲压发动机关键技术探索与研究[D]. 长沙:国防科学技术大学, 2008.
[28] Foote J P, Thompson B R, Lineberry J T. Combustion of Aluminum with Steam for Underwater Propulsion[M].Boca Raton: CRC Press, 2002.
[29] Miller T, Herr J. Green Rocket Propulsion by Reaction of Al and Mg Powders and Water[R]. AIAA 2004-4037.
[30] Brown R L, Richards J C. Principles of Powder Mechanics[M]. UK: Pergamon Press, 1970.
[31] Shorr M. An Experimental Study of Burning Rate in Powder Beds[R]. AIAA 75-1334.
[32] Shorr M. Reinhardt T F. Feasibility of a Fluidized Powder Demand-Mode Gas Generator[J]. Journal of Spacecraft & Rockets, 1975, 11(1): 29-32.
[33] Kapanadze S A, Mazing G Yu, Pmdnikov N E. Feasibilities of Using Planetary Atmosphere for a Takeoff from a Descent Vehicle to Earth[C]. Moscow: Nauchnye Chteniya po Aviatsii I Kosmonavtike, 1981.
[34] Braun W V, Page T. The Mars Project[J]. American Journal of Physics, 1963, 31(8).
[35] Ash R L. Feasibility of Rocket Propellant Production on Mars[J]. Acta Astronautica, 1978, 5(9): 705-724.
[36] Ramohalli K. Novel Extraterrestrial Processing for Space Propulsion[J]. Acta Astronautica, 1987, 15(5):259-273.
[37] Shafirovich E, Goldshleger U. Combustion of Magnesium Particles in CO2/CO Mixtures[J]. Combustion Science & Technology, 1992, 84(1-6): 33-43.
[38] Shafirovich E. The Superheat Phenomenon in the Combustion of Magnesium Particles[J]. Combustion & Flame, 1992, 88(3-4): 425-432.
[39] Shafirovich E. Magnesium and Carbon Dioxide-A Rocket Propellant for Mars Missions[J]. Journal of Propulsion & Power, 1993, 9(2): 197-203.
[40] John Foote, Ron Litchford. Powdered Magnesium-Carbon Dioxide Combustion for Mars Propulsion[R]. AIAA 2005-4469.
[41] 姚亮, 胡春波, 肖虎亮, 等. Mg粉/CO2粉末火箭发动机点火试验研究[J]. 固体火箭技术, 2011, 34(4):440-442.
[42] 乔龄山. 水泥堆积密度理论计算方法介绍[J]. 水泥, 2007, 7: 1-7.
[43] Miller T F, Walter J L, Kiely D H. A Next-Generation AUV Energy System Based on Aluminum-Seawater Combustion[C]. Isle of Bendor: Proceedings of the 2002 Workshop on IEEE, 2002.
[44] 杨晋朝, 夏智勋, 胡建新, 等. 粉末燃料高效装填技术研究[J]. 固体火箭技术, 2013, 36(1): 37-44.
[45] 武冠杰, 任全彬, 胡春波, 等. 基于AP预处理技术的粉末推进剂性能[J]. 含能材料, 2017, 8: 627-632.
[46] Weymouth C A. Effects of Particle Interference in Mortars and Concretes[J]. Rock Products, 1933, 36(2):26-30.
[47] 朱小飞. 铝粉装填率及其流化性能研究[D]. 西安:西北工业大学, 2015
[48] 张杰, 贺俊, 邹彦文. 固体颗粒表面改性及其在推进剂领域中的应用研究[J]. 哈尔滨工业大学学报, 2004, 36(9): 1147-1152.
[49] 刘冠鹏. 镁(铝)金属粉的改性及其在金属/水反应推进剂中的应用研究[D]. 南京:南京理工大学, 2008.
[50] 王婷, 朱宝忠, 孙运兰. Ni包覆纳米Al粉在CO2气氛中热反应特性及动力学研究[J]. 推进技术, 2017, 38(1): 220-226. (WANG Ting, ZHU Bao-zhong, SUN Yun-lan. Thermal Reaction Characteristics and Kinetics of Nano-Aluminum Powder Coated with Nickel in Carben Dioxide[J]. Journal of Propulsion Technology, 2017, 38(1): 220-226.)
[51] Sun H, Hu C, Zhang T, et al. Experimental Investigation on Mass Flow Rate Measurements and Feeding Characteristics of Powder at High Pressure[J]. Applied Thermal Engineering, 2016, 102: 30-37.
[52] 郭连贵, 宋武林, 谢长生, 等. 核壳结构纳米铝粉热学行为[J]. 推进技术, 2012, 33(3): 478-482. (GUO Lian-gui, SONG Wu-lin, XIE Chang-sheng, et al. Thermal Behavior of Core-Shell Structure Aluminum Nanopowders[J]. Journal of Propulsion Technology,2012, 33(3): 478-482.) * 收稿日期:2017-10-28;修订日期:2017-12-26。基金项目:国家自然科学基金(51576166)。作者简介:李悦,男,博士生,研究领域为粉末发动机设计。E-mail: liyyue@mail.nwpu.edu.cn通讯作者:胡春波,男,博士,教授,研究领域为粉末发动机设计。E-mail: Huchubo@nwpu.edu.cn
|