[1] Latin R M, Bowersox R D W. Flow Properties of a Supersonic Turbulent Boundary Layer with Wall Roughness[J]. AIAA Journal, 2000, 38(10): 1804-1821.
[2] Latin R M. The Influence of Surface Roughness on Supersonic High Reynoolds Number Turbulent Boundary Layer Flow[D]. Ohio: Air Force Institute of Technology, Wright-Patterson Air Force Base, 1998.
[3] Kerevanian G K, Sidorenko A, Benard E, et al. Effect of Height and Density of Roughness Elements on Turbulent Boundary Layers[R]. AIAA 2003-645.
[4] Yoon S, Na S, Wang Z J, et al. Flow and Heat Transfer over Rough Surface: Usefulness of 2-D Roughness-Resolved Simulations[R]. AIAA 2006-0025.
[5] Sahoo D, Schultze M, Smits A J, et al. Effects of Roughness on a Turbulent Boundary Layer in Hypersonic Flow[R]. AIAA 2009-3678.
[6] Jimenez J. Turbulent Flows Over Rough Walls[J]. Annual Review Fluid Mechanics, 2001, 36(1): 173-196.
[7] Babinsky H, Inger G R. Effect of Surface Roughness on Unseparated Shock-Wave/Turbulent Boundary Layer Interactions[J]. AIAA Jounral, 2002, 40(8): 1567-1573.
[8] Lin K C, Tam C J. Characterization of Shock Train Structures inside Constant-Area Isolators of Model Scramjet Combustors[R]. AIAA 2006-816.
[9] Duan Z W, Xiao Z X, Fu S. Direct Numerical Simulation of Hypersonic Transition Induced by an Isolated Cylindrical Roughness Element[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(12): 2331-2345.
[10] 段志伟, 肖志祥. 粗糙元诱导的高超声速边界层转捩[J]. 航空学报, 2016, 37(8): 2454-2463.
[11] 赵晓慧, 邓小兵, 毛枚良, 等. 高超声速进气道强制转捩流动的大涡模拟[J]. 航空学报, 2016, 37(8):2445-2453.
[12] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报, 2014, 36(5): 1471-1479.
[13] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6.
[14] 黄勇, 钱丰学, 于昆龙, 等. 基于柱状粗糙元的边界层人工转捩试验研究[J]. 实验流体力学, 2006, 20(3): 59-62.
[15] 张子明, 倪鸿礼, 赵慧勇. 高超声速进气道钻石型强制转捩装置的转捩准则研究[J]. 推进技术, 2017, 38(9): 1930-1935. (ZHANG Zi-ming, NI Hong-li, ZHAO Hui-yong. Research on Transition Criterion of Diamond Forced-Transition Trip for Hypersonic Inlet[J]. Journal of Propulsion Technology, 2017, 38(9):1930-1935.)
[16] 王金光. 二元高超声速进气道阻力特性研究[D]. 南京:南京航空航天大学, 2011.
[17] 高亮杰. 非等直截面及复杂环境下隔离段流动[D]. 南京:南京航空航天大学, 2011.
[18] 苗辉, 黄勇, 谢法. 流体热物性对粗糙微通道内传热性能的影响[J]. 推进技术, 2012, 33(4): 625-630. (MIAO Hui, HUANG Yong, XIE Fa. Effects of Thermal Properties of the Working Fluid on Heat Transfer Characteristic in Rough Microchannels[J]. Journal of Propulsion Technology, 2012, 33(4): 625-630.)
[19] Nikuradse J. Stromungsgesetze in Glatten and Rauhen Rohren[J]. Work Rep, 1933, (361): 10-15.
[20] Nikuradse J. Laws of Flow in Rough Pipes[M]. Washington: National Advisory Committee for Aeronautics, 1950.
[21] 陈懋章. 粘性流体动力学基础[M]. 北京:高等教育出版社, 2002.
[22] White F K. 粘性流体力学[M]. 魏中磊, 甄思淼, 译. 北京:机械工业出版社, 1982. * 收稿日期:2017-11-22;修订日期:2018-03-13。基金项目:中国航天科技集团公司航天科技创新基金;中央高校基本科研业务费(NZ2016103);国家自然科学基金(11772155);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20160204)。作者简介:张锦昇,男,博士生,研究领域高超声速进气道、组合动力进气道。E-mail: 1021965168@qq.com通讯作者:袁化成,男,副教授,研究领域高超声速进气道、组合动力进气道。E-mail: yuanhuacheng@nuaa.edu.cn
|