[1] Zang A, Tempel T, Yu K, et al. Experimental Characterization of Cavity-Augmented Supersonic Mixing[C]. Nevada: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[2] Mathur T, Gruber M, Jackson K, et al. Supersonic Combustion Experiments with a Cavity-Based Fuel Injector[J]. Journal of Propulsion and Power, 2001, 17 (6):1305-1312.
[3] Ben-Yakar A, Hanson R K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: an Overview [J]. Journal of Propulsion and Power, 2001, 17 (4):869-877.
[4] Gruber M, Baurle R, Mathur T, et al. Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors[J]. Journal of Propulsion and Power, 2001, 17 (1):146-153.
[5] Yu K H, Wilson K J, Schadow K C. Effect of Flame-Holding Cavities on Supersonic-Combustion Performance [J]. Journal of Propulsion and Power, 2001, 17 (6): 1287-1295.
[6] Gruber M, Baurle R, Mathur T, et al. Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors[J]. Journal of Propulsion and Power, 2001, 17 (1):146-153.
[7] Kim K M, Baek S W, Han C Y. Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection [J]. International Journal of Heat and Mass Transfer, 2004, 47 (2): 271-286.
[8] 耿辉, 周进, 翟振辰, 等. 凹腔结构对超声速燃烧室中横向燃料喷流流动与燃烧的影响[J]. 推进技术, 2007, 28(6): 599-606. (GENG Hui, ZHOU Jin, ZHAI Zhen-chen, et al. Influence of Cavity Geometry on Flow and Combustion of Transverse Fuel Jets in a Supersonic Combustor[J]. Journal of Propulsion Technology, 2007, 28(6): 599-606.)
[9] Cai Z, Yang Y, Sun M, et al. Experimental Investigation on Ignition Schemes of a Supersonic Combustor with the Rearwall-Expansion Cavity[J]. Acta Astronautica,2016, 123: 181-187.
[10] Cai Z, Wang Z, Sun M, et al. Effect of Combustor Geometry and Fuel Injection Scheme on the Combustion Process in a Supersonic Flow[J]. Acta Astronautica,2016, 129: 44-51.
[11] Bao H, Zhou J, Pan Y. Effect of Cavity Configuration on Kerosene Spark Ignition in a Scramjet Combustor at Ma4.5 Flight Condition[J]. Acta Astronautica, 2015, 117: 368-375.
[12] Huang W, Liu J, Yan L, et al. Multiobjective Design Optimization of the Performance for the Cavity Flameholder in Supersonic Flows[J]. Aerospace Science and Technology, 2013, 30(1): 246-54.
[13] Huang W, Pourkashanian M, Ma L, et al. Effect of Geometric Parameters on the Drag of the Cavity Flameholder Based on the Variance Analysis Method[J]. Aerospace Science and Technology, 2012, 21(1): 24-30.
[14] 黄伟, 雷静. 凹腔结构对圆形超燃冲压发动机燃烧室阻力特性影响[J]. 固体火箭技术, 2011, 34(1):52-56.
[15] Smart M, Ruf E. Free-Jet Testing of a REST Scramjet at Off-Design Conditions[C]. California: 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006.
[16] Heiser W H, Pratt D T. Hypersonic Airbreathing Propulsion[M]. Washington, DC: AIAA Education Series, 1994.
[17] Malo-Molina F J. Numerical Study of Innovative Scramjet Inlets Coupled to Combustors Using Hydrocarbon-Air Mixture[M]. Atlanta: Georgia Institute of Technology, 2010.
[18] Segal C. The Scramjet Engine: Processes and Characteristics[M]. Cambridge: Cambridge University Press, 2009.
[19] Hasselbrink E F, Mungal M. Transverse Jets and Jet Flames, Part 1: Scaling Laws for Strong Transverse Jets [J]. Journal of Fluid Mechanics, 2001, 443(443): 1-25.
[20] Manual F. Manual and User Guide of Fluent Software [M]. Lebanon: Fluent, Inc, 2005.
[21] Horstman C, Settles G, Williams D, et al. A Reattaching Free Shear Layer in Compressible Turbulent Flow [J]. AIAA Journal, 1982, 20 (1): 79-85.
[22] Settles G, Williams D, Baca B, et al. Reattachment of a Compressible Turbulent Free Shear Layer[J]. AIAA Journal, 1982, 20(1): 60-67.
[23] Aso S, Kawai M, Ando Y. Experimental Study on Mixing Phenomena in Supersonic Flows with Slot Injection [C]. Nevada: 29th Aerospace Sciences Meeting, 1991.
[24] 耿辉. 超声速燃烧室中凹腔上游横向喷注燃料的流动, 混合与燃烧特性研究[D]. 长沙:国防科技大学, 2007.
[25] Jeong S, Murayama M, Yamamoto K. Efficient Optimization Design Method Using Kriging Model[J]. Journal of Aircraft, 2005, 42 (2): 413-420.
[26] Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-2[J]. Evolutionary Computation, 2002, 6(2): 182-197.
[27] Huang W, Wang Z G, Ingham D B, et al. Design Exploration for a Single Expansion Ramp Nozzle (SERN) Using Data Mining[J]. Acta Astronautica, 2013, 83:10-17.
[28] Huang W, Yang J, Yan L. Multi-Objective Design Optimization of the Transverse Gaseous Jet in Supersonic Flows [J]. Acta Astronautica, 2014, 93: 13-22.(编辑:梅瑛) * 收稿日期:2017-07-17;修订日期:2017-08-29。作者简介:朱美军,女,博士生,研究领域为超燃冲压发动机内流道设计与优化。E-mail: zhumeijun@zju.edu.cn通讯作者:张帅,男,博士,副教授,研究领域为超燃冲压发动机内流道设计与优化。E-mail: shuaizhang@zju.edu.cn
|