[1] Culick F E C. An Elementary Calculation of the Combustion of Solid Propellants[J]. Astronautica Acta,1969, 49(1-2): 203-220.
[2] Rastogi R P, Kishore K, Singh G. Solid Propellant Decomposition Studies by Differential Scanning Calorimetry[J]. Thermochimica Acta, 1975, 12(1): 89-96.
[3] Lengelle G, Duterque J, Trubert J F. Combustion of Solid Propellants[J]. Combustion of Solid Propellants, 2002, 2(7): 1319-1323.
[4] Tanner M W. Multidimensional Modeling of Solid Propellant Burning Rates and Aluminum Agglomeration and One-Dimensional Modeling of RDX/GAP and AP/HTPB[J]. Dissertations & Theses-Gradworks, 2008, 9(6):1245-1256.
[5] Maise G, Sabadell A J. Electrostatic Probe Measurements in Solid-Propellant Rocket Exhausts[J]. AIAA Journal, 2015, 8(8).
[6] Nelson H F, Fields J C. Heat Transfer in Two-Phase Solid-Rocket Plumes[J]. Journal of Spacecraft & Rockets, 2015, 33(4): 494-500.
[7] Burns G W, Gallagher J S. Reference Tables for Pt-30 Percent Rh Versus Pt 6 Percent Rh Thermocouple[J]. Journal of Research of the National Bureau of Standards Section C-Engineering and Instrumentation, 1966, 100(2): 89-151.
[8] Asamoto R R, Novak P E. Tungsten-Rhenium Thermocouples for Use at High Temperatures[J]. Review of Scientific Instruments, 1967, 38(8): 1047-1052.
[9] Fam S, Lynnworth L C, Carnevale E H. Ultrasonic Thermometry in Lmfbr Systems[R]. Second Quarterly Progress Report Contract 1968. AT(30-1)-3906.
[10] Carnevale E H, Lynnworth L C, Larson G S. High Temperature Measuring Device[R]. NASA CR-54539, 1965.
[11] 徐强, 李军, 曹从咏. 火箭燃气射流温度分布的实验研究[J]. 推进技术, 2003, 24(2): 109-111. (XU Qiang, LI Jun, CAO Cong-yong. Experimental Study on Temperature Distribution in Rocket Exhausted Flow Field[J]. Journal of Propulsion Technology, 2003, 24(2): 109-111.
[12] 胡建新, 夏智勋, 张龙, 等. 固体火箭冲压发动机补燃室燃烧过程显示[J]. 推进技术, 2007, 28(4):337-341. (HU Jian-xin, XIA Zhi-xun, ZHANG Long, et al. Combustion Process in Secondary Combustion Chamber of Ducted Rocket by High Speed Photography and Digital Image Processing[J]. Journal of Propulsion Technology, 2007, 28(4): 337-341.)
[13] 范传新. 固体火箭羽焰的辐射特性及其温度测量技术述评[J]. 固体火箭技术, 2004, (3): 238-242.
[14] 潘卫东. 喷管羽流温度场测量系统的研制[D]. 哈尔滨:哈尔滨工业大学, 2008.
[15] 李继保. 环形燃烧室出口径向温度分布系数预估[J]. 推进技术, 1998, 19(3): 1-4. (LI Ji-bao. Prediction of Exit Radial Temperature Distribution Factor from Gas Turbine Annular Combustors[J]. Journal of Propulsion Technology, 1998, 19(3): 1-4.)
[16] 孙晓刚, 戴景民, 王雪峰, 等. 一种测量固体火箭发动机羽焰温度的数据处理方法研究[J]. 红外与毫米波学报, 2003, (2): 141-144.
[17] Wei Y, Gao Y, Xiao Z. Ultrasonic Al2O3 Ceramic Thermometry in High-Temperature Oxidation Environment [J]. Sensors, 2016, 16(11).
[18] 田苗, 王高, 刘争光, 等. 超声脉冲测温技术初步研究[J]. 声学技术, 2017, 36(1): 27-31.
[19] 魏艳龙, 王高, 郭倩, 等. 基于磁致伸缩式超声导波测温技术基础研究[J]. 火力与指挥控制, 2016, 41(7): 171-174.
[20] 郭亚飞, 王高, 魏艳龙, 等. 用于电磁超声测温的脉冲激励电源研制[J]. 电光与控制, 2016, 23(5):99-103.(编辑:朱立影) * 收稿日期:2017-10-18;修订日期:2017-12-12。作者简介:魏艳龙,男,博士生,研究领域为超高温环境下温度测试技术。E-mail: 18636136726@163.com通讯作者:王高,男,博士,教授,研究领域为高温环境下传感测试技术。E-mail: wanggao@nuc.edu.cn
|