[1] 贺武生. 超燃冲压发动机研究综述[J]. 火箭推进,2005, 31(1): 29-32.
[2] 刘小勇. 超燃冲压发动机技术[J]. 飞航导弹, 2003, (2): 38-42.
[3] 任加万, 谭永华. 冲压发动机燃烧室热防护技术[J]. 火箭推进, 2006, 32(4): 38-47.
[4] Dewitt M J, Edwards T, Shafer L, et al. Effect of Aviation Fuel Type on Pyrolytic Reactivity and Deposition Propensity under Supercritical Conditions[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10434-10451.
[5] Edwards T. Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels[J]. Combustion Science and Technology, 2006, 178(1-3): 307-334.
[6] Deng H W, Zhang C B, Xu G Q, et al. Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions[J]. Journal of Chemical and Engineering Data, 2011, 56(6): 2980-2986.
[7] Deng H W, Zhang C B, Xu G Q, et al. Viscosity Measurements of Endothermic Hydrocarbon Fuel from 298 to 788K under Supercritical Pressure Conditions[J]. Journal of Chemical and Engineering Data, 2012, 57(2): 358-365.
[8] Zhang C B, Xu G Q, Gao L, et al. Experimental Investigation on Heat Transfer of a Specific Fuel (RP-3) Flows Through Downward Tubes at Supercritical Pressure[J]. Journal of Supercritical Fluids, 2012, 72(9): 90-99.
[9] Zhu K, Xu G Q, Tao Z, et al. Flow Frictional Resistance Characteristics of Kerosene RP-3 in Horizontal Circular Tube at Supercritical Pressure[J]. Experimental Thermal and Fluid Science, 2013, 44(1): 245-252.
[10] 王英杰, 徐国强, 邓宏武, 等. 超临界RP-3管内换热特性实验[J]. 推进技术, 2009, 30(6): 656-660. (WANG Ying-jie, XU Guo-qiang, DENG Hong-wu, et al. Experimental Investigation on Heat Transfer of Supercritical RP-3[J]. Journal of Propulsion Technology, 2009, 30(6): 656-660.)
[11] 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究[J]. 推进技术, 2010, 31(4): 467-472. (LI Xun-feng, ZHONG Feng-quan, FAN Xue-jun, et al. Numerical Study of Convective Heat Transfer of Aviation Kerosene Flows in Pipe at Supercritical Pressure[J]. Journal of Propulsion Technology, 2010, 31(4): 467-472.)
[12] 程泽源, 朱剑琴, 李海旺. 竖直圆管内超临界碳氢燃料换热恶化的直径效应[J]. 航空学报, 2016, 37(10): 2941-2951.
[13] 王龙云, 朱剑琴, 李海旺, 等. 压力对超临界碳氢燃料换热恶化影响的数值研究[J]. 推进技术, 2017, 38(11): 2540-2547. (WANG Long-yun, ZHU Jian-qin, LI Hai-wang, et al. Numerical Study of Pressure Effect on Deterioration in Heat Transfer with Supercritical Hydrocarbon Fuel [J]. Journal of Propulsion Technology, 2017, 38(11): 2540-2547.)
[14] Zhong F Q, Fan X J, Yu G, et al. Thermal Cracking of Aviation Kerosene for Scramjet Applications[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2644-2652.
[15] Jiang R P, Liu G Z, Zhang X W. Thermal Cracking of Hydrocarbon Aviation Fuels in Regenerative Cooling Micro channels[J]. Energy & Fuels, 2013, 27(5): 2563-2577.
[16] 赵国柱, 宋文艳, 张若凌. 超临界态碳氢燃料流固耦合传热及热裂解的计算方法研究[J]. 推进技术, 2014, 35(12): 1639-1644. (ZHAO Guo-zhu, SONG Wen-yan, ZHANG Ruo-ling. Numerical Method Development for Conjugated Heat Transfer of Hydrocarbon Fuel with Thermal Cracking at Supercritical Conditions [J]. Journal of Propulsion Technology, 2014, 35(12): 1639-1644.)
[17] Zhao G Z, Song W Y, Zhang R L. Effect of Pressure on Thermal Cracking of China RP-3 Aviation Kerosene under Supercritical Conditions[J]. International Journal of Heat and Mass Transfer, 2015, 84: 625-632.
[18] Xu K K, Meng H. Modeling and Simulation of Supercritical-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J]. Energy & Fuels, 2015, 29: 4137-4149.
[19] 陈尊敬, 王雷雷, 孟华. 考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J]. 航空学报, 2013, 34(1): 8-18.
[20] Wang L L, Chen Z J, Meng H. Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressures[J]. Applied Thermal Engineering, 2013, 54(1): 237-246.
[21] Ren Y Z, Zhu J Q, Deng H W. Numerical Study of Heat Transfer of RP-3 at Supercritical Pressure[J]. Advanced Materials Research, 2013, 663, 470-476.
[22] 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398.
[23] Zhu J Q, Tao Z, Deng H W, et al. Numerical Investigation of Heat Transfer Characteristics and Flow Resistance of Kerosene RP-3 under Supercritical Pressure[J]. International Journal of Heat and Mass Transfer, 2015, 91: 330-341.
[24] 朱剑琴. 旋转叶片冷却计算中各向异性湍流模型的研究[D]. 北京:北京航空航天大学, 2010.
[25] Younglove B A, Ely J F. Thermophysical Properties of Fluids.II. Methane, Ethane, Propane, Isobutane, and Normal Butane[J]. Journal of Physical and Chemical Reference Data, 1987, 16(4): 577-798.
[26] Huber M L. Transport Properties of Fluids, the Correlation, Prediction and Estimation[M]. Cambridge: Cambridge University Press, 1996.
[27] Feng Y, Zhang S L, Cao J, et al. Coupling Relationship Analysis Between Flow and Pyrolysis Reaction of Endothermic Hydrocarbon Fuel in View of Characteristic Time Correlation in Mini-Channel [J]. Applied Thermal Engineering, 2016, 102: 661-671.
[28] 刘志琦. 超燃冲压发动机再生冷却技术研究[D]. 长沙:国防科学技术大学, 2010.
[29] 蒋劲. 超燃冲压发动机燃烧室再生冷却研究[D]. 西安:西北工业大学, 2006.
[30] Bao W, Li X L, Qin J, et al. Efficient Utilization of Heat Sink of Hydrocarbon Fuel for Regeneratively Cooled Scramjet[J]. Applied Thermal Engineering, 2012, 33(1): 208-218.
[31] Urbano A, Nasuti F. Onset of Heat Transfer Deterioration in Supercritical Methane Flow Channels[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(2): 298-308.
[32] Urbano A, Nasuti F. Conditions for the Occurrence of Heat Transfer Deterioration in Light Hydrocarbons Flows[J]. International Journal of Heat and Mass Transfer, 2013, 65(5): 599-609.(编辑:史亚红) * 收稿日期:2017-08-19;修订日期:2017-10-13。基金项目:国家自然科学基金(51406005);国防基础科研计划资助(B2120132006)。通讯作者:胡希卓,男,博士生,研究领域为超临界碳氢燃料流动换热。E-mail: hxzbuaa@163.com
|