[1] Glassman I. Combustion of Metals: Physical Considerations[R]. USA: Solid Propellant Rocket Research, Progress in Astronautics and Aeronautics,1960.
[2] Price E W. Combustion of Metalized Propellants[J]. Fundamentals of Solid Propellant Combustion, 1984, 90: 479-514.
[3] Liu T K. Experimental and Model Study of Agglomeration of Burning Aluminized Propellants[J]. Journal of Propulsion and Power, 2005, 21(5): 797-806.
[4] Gallier S, Godfroy F. Aluminum Combustion Driven Instabilities in Solid Rocket Motors[J]. Journal of Propulsion and Power, 2009, 25(2): 509–521.
[5] 王宁飞, 陈龙, 赵崇信, 等. 固体火箭燃烧室内微粒分布的实验研究[J] . 推进技术, 1995, 16(4): 24-27. (WANG Ning-fei, CHEN Long, ZHAO Chong-xin, et al. An Experimental Study on Distribution of Particulates in Solid Rocket Motors[J]. Journal of PropulsionTechnology, 1995, 16(4) : 24-27.)
[6] 金秉宁, 刘佩进, 杜小坤, 等. 复合推进剂中铝粉粒度对分布燃烧响应和粒子阻尼特性影响[J]. 推进技术, 2014, 35(12): 1701-1706. (JIN Bing-ning, LIU Pei- jin, DU Xiao- kun, et al. Effects of Different Aluminum Particle Sizes in Composite Propellant on Distributed Combustion Response and Particle Damping[J]. Journal of Propulsion Technology, 2014, 35(12): 1701-1706.)
[7] Shimada T, Sekiguchi M, Sekino N. Flow Inside a Solid Rocket Motor with Relation to Nozzle Inlet Ablation[J]. AIAA Journal, 2007, 45(6): 1324-1332.
[8] 李江, 何国强, 陈剑, 等. 高过载条件下绝热层烧蚀实验方法研究(Ⅱ)收缩管聚集法[J]. 推进技术, 2004, 25(3): 196-198. (LI Jiang, HE Guo-qiang, CHEN Jian, et al. Study of Experimental Method for Ablation of Insulator of SRM with High Acceleration (Ⅱ)Convergent Tube Experimental Method[J]. Journal of Propulsion Technology, 2004, 25(3): 196-198.)
[9] Melcher J C. Combustion of Single and Agglomerated Aluminum Particles in Solid Rocket Motor Flows[D].Champaign-Urbana: University of Illinois, 2001.
[10] Anand K V, Roy A, Mulla I, et al. Experimental Data and Model Predictions of Aluminium Agglomeration in Ammonium Perchlorate-Based Composite Propellants Including Plateau-Burning Formulations[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2139-2146.
[11] Glotov O G. Condensed Combustion Products of Aluminized Propellants, II. Evolution of Particles with Distance from the Burning Surface[J]. Combustion Explosion and Shock Waves, 2000, 36 (4): 476-487.
[12] Sambamurthi J K, Price E W, Sigman R K. Aluminum Agglomeration in Solid-Propellant Combustion[J]. AIAA Journal, 1984, 22 (8): 1132-1138.
[13] Liu T K. Experimental and Model Study of Agglomeration of Burning Aluminized Propellants[J]. Journal of Propulsion and Power, 2015, 21(5): 797-806.
[14] Takahashi K, Oide S, Kuwahara T. Agglomeration Characteristics of Aluminum Particles in AP/AN Com posite Propellants[J]. Propellants Explosives Pyrotechincs, 2013, 38 (4): 555-562.
[15] Mullen J C, Brewster M Q. Reduced Agglomeration of Aluminum in Wide-Distribution Composite Propellants [J]. Journal of Propulsion and Power, 2011, 27(3):650-661.
[16] 刘鑫, 刘佩进, 关昱, 等. 复合推进剂中铝的燃烧实验研究方法[J]. 固体火箭技术, 2015, 38(6): 833-836.
[17] Gabor D. A New Microscopic Principle[J]. Nature, 1948, 161(4098): 777-778.
[18] Vikram C S. Particle Field Holography[M]. London: Cambridge University Press, 2005.
[19] 李茹, 王国志, 张耀明. 含铝推进剂燃烧场全息粒子图象处理系统的研究[J]. 光子学报, 1999, 28(12): 1107-1112.
[20] Meng H, Pan G, Pu Y, et al. Holographic Particle Image Velocimetry: from Film to Digital Recording[J]. Measurement Science and Technology, 2004, 15(4): 673.
[21] Schnars U, Jüptner W. Digital Holography. Digital Hologram Recording, Numerical Reconstruction, and Related Techniques [M]. Berlin: Springer, 2005.
[22] Guildenbecher D R, Cooper M A, Gill W, et al. Quantitative, Three-Dimensional Imaging of Aluminum Drop Combustion in Solid Propellant Plumes via Digital In-Line Holography[J]. Optics Letters, 2014, 39(17):5126.
[23] Chen Y, Guildenbecher D R, Hoffmeister K N G, et al. Study of Aluminum Particle Combustion in Solid Propellant Plumes Using Digital In-Line Holography and Imaging Pyrometry[J]. Combustion and Flame, 2017, 182:225-237.
[24] 王志新, 刘佩, 金秉宁, 等. 基于同轴数字全息法的推进剂铝燃烧测量方法研究[C]. 大连:中国航天第三专业信息网技术交流会, 2017.
[25] Schnars U. Direct Phase Determination in Hologram Interferometry with Use of Digitally Recorded Holograms[J]. Journal of the Optical Society of America A, 1994, 11(7): 2011-2015.
[26] Takeda M, Taniguchi K, Hirayama T, et al. Single Transform Fourier—Hartley Fringe Analysis for Holographic Interferometry[J]. Simulation and Experiment in Laser Metrology, 1996, 2: 67-73.
[27] Demetrakopoulos T H, Mittra R. Digital and Optical Reconstruction of Images from Suboptical Diffraction Patterns[J]. Applied optics, 1974, 13(3): 665-670.
[28] Huang T S. Digital Holography[J]. Proceedings of the IEEE, 2005, 59(9): 1335-1346.
[29] Buraga-Lefebvre C, Co?tmellec S, Lebrun D, et al. Application of Wavelet Transform to Hologram Analysis: Three-Dimensional Location of Particles[J]. Optics and Lasers in Engineering, 2000, 33(6): 409-421.
[30] 刘鑫, 刘佩进, 金秉宁, 等. 复合推进剂中铝燃烧实验研究[J]. 推进技术, 2016, 37(8): 1579-1585. (LIU Xin, LIU Pei-jin, JIN Bing-ning, et al. An Experimental Investigation of Aluminum Combustion in Composite Propellent[J]. Journal of Propulsion Technology, 2016, 37(8): 1579-1585.) * 收稿日期:2018-01-08;修订日期:2018-03-20。基金项目:国家自然科学基金(51706186)。作者简介:金秉宁,男,博士,助理研究员,研究领域为固体火箭发动机燃烧不稳定及控制技术。 E-mail: jinbingning@nwpu.edu.cn通讯作者:刘佩进,男,教授,博士生导师,研究领域为火箭发动机燃烧不稳定及激光燃烧诊断。 E-mail:Liupj@nwpu.edu.cn(编辑:朱立影)
|