[1] 王江峰,伍贻兆 .高超声速复杂气动问题数值方法研究进展[J].航空学报, 2015,33(1): 159-175.
[2] 桂业伟,刘磊,代光月,等 .高超声速飞行器流 -热 -固耦合研究现状与软件开发[J].航空学报, 2017,38(7): 87-105.
[3] 程兴华 .高超声速飞行器防热壁板气动热弹性耦合建模与分析[D].长沙:国防科学技术大学, 2012.
[4] 杨恺,原志超,朱强华,等 .高超声速热化学非平衡钝体绕流数值模拟[J].推进技术, 2014,35(12): 1585-1591.(YANG Kai,YUAN Zhi-chao,ZHU Qiang-hua,et al.Numerical Simulation of Hypersonic Thermo.chemical Nonequilibrium Blunt Body Flows[J].Journal of Propulsion Technology,2014,35(12):1585-1591.)
[5] 田旭昂,王成鹏,程克明 .Ma5斜激波串动态特性实验研究[J].推进技术, 2014,35(8): 1030-1039.(TIAN Xu -ang,WANG Cheng -peng,CHENG Ke -ming.Experimental Investigation of Dynamic Character.istics of Oblique Shock Train in Mach 5 Flow[J].Jour.nal of Propulsion Technology,2014,35(8): 1030-1039.)
[6] 董维中,高铁锁,丁明松,等 .高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2015,36(1): 311-324.
[7] Kontinos D.Coupled Thermal Analysis Method with Ap.plication to Metallic Thermal Protection Panels[J].Journal of Thermophysics and Heat Transfer,1997,11(2): 173–181.
[8] Guo Shuai,Xu Jinglei,Qin Qihao,et al.Fluid-Ther.mal Interaction of Spiked Blunt Bodies at HypersonicFlight Condition[J].Journal of Spacecraft and Rockets, 2016,53(4): 629-643.
[9] 夏刚,刘新建,程文科,等 .钝头体超声速气动加热与结构传热耦合的数值计算[J].国防科技大学学报, 2003,25(1): 35-39.
[10] 张胜涛,陈方,刘洪 .高超声速进气道前缘流场 -热 -结构耦合分析[J].空气动力学学报, 2017, 35(3): 436-443.
[11] Wieting A R,Dechaumphai P,Bey K S,et al.Applica.tion of Integrated Fluid-Thermal -Structural AnalysisMethods[J].Thin-Walled Structures,1991,11(91):1–12.
[12] 李鹏飞,吴颂平 .类航天飞机前身结构与高超声速流场的耦合传热模拟分析[J].航空动力学报, 2010,25(8): 1705-1710.
[13] 姜贵庆,童秉纲,曹树声 .以有限元方法为主体的计算气动热力学[J].力学与实践, 1992,14(3): 1-8.
[14] Dechaumphai P,Thomton E A,Wieting A R.Flow-Thermal-Structural Study of Aerodynamically HeatedLeading Edges[J].Journal of Spacecraft,1989,26(4): 201-209.
[15] Wieting A R.Experimental Study of Shock Wave Inter-Ference Heating on a Cylindrical Edge[R].NASA-TM-100484,1987.
[16] 黄唐,毛国良,姜贵庆,等 .二维流场、热、结构一体黄化数值模拟[J].空气动力学学报, 2000,18(1): 115-119.
[17] 耿湘人,张涵信,沈清,等 .高超飞行器流场和固体结构温度场一体化计算新方法的初步研究[J].空气动力学学报, 2002,20(4): 422-427.
[18] Menter F R.Two-Equation Eddy-Viscosity TurbulenceModels for Engineering Applications[J].AIAA Jour.nal,1994,32(8): 1598-1605.
[19] Liou M S.A Sequel to AUSM: AUSM+[J].Journal of Computational Physics,1996,129(2): 364-382.
[20] 季卫栋,王江峰,樊孝峰,等 .高超声速流场与结构温度场一体化计算方法[J].航空动力学报, 2016,31(1): 153-160.
[21] Blazek J.Computational Fluid Dynamics: Principles andApplications[M].UK: Elsevier Science Ltd.,2001.
[22] Valli A M P,Carey G F,Coutinho A L G A.Control Strat.egies for Timestep Selection in Finite Element Simulationof Incompressible Flows and Coupled Reaction-Convec.tion-Diffusion Processes[J].International Journal for Nu.merical Methods in Fluids,2005,47(3): 201–231.
[23] Shengtao Zhang,Fang Chen,Hong Liu.Time-Adap.tive,Loosely Coupled Strategy for Conjugate Heat Trans.fer Problems in Hypersonic Flows[J].Journal of Ther.mophysics and Heat Transfer,2014,28(4): 635-645.
[24] Wieting A R,Holden M S.Experimental Study of ShockWave Interference Heating on a Cylindrical LeadingEdge at Mach 6 and 8[R].AIAA 87-1511.
[25] 张智超,高振勋,蒋崇文,等 .高超声速气动热数值计算壁面网格准则[J].北京航空航天大学学报, 2015,41(4): 594-600.
[26] Fay JA,Riddell F R.Theory of Stagnation Point HeatTransfer in Dissociated Air[J].Journal of the Aeronau.tic Sciences,2015,25(2): 73-85.
[27] 黄杰 .高超声速飞行器流热固多物理场耦合计算究[D].哈尔滨:哈尔滨工业大学, 2013: 33-36.
[28] Billig F S.Shock-Wave Shapes Around Spherical andCylindrical-Nosed Bodies[J].Journal of Spacecraft and Rockets,1967,4(6): 822-823.
[29] Holcomb J E,Curtis J T,Shope F L.A New Version ofthe CVEQ Hemisphere Viscous Shock Layer Program forEquilibriumAir[R].NASA TN AEDC-TMR-85-V7,1985.
[30] Josepb W Cleary.Effect of Angle of Attack and Bluntness on Laminar Heating-Rate Distributions of A 15°Cone at Mach Number of 10.6[R].NASA TN D-5450, 1969.(编辑:梅瑛)*收稿日期:2017-12-17;修订日期:2018-02-06。基金项目:国家自然科学基金( 90716031);江苏省研究生科研与实践创新计划项目( KYCX17_0235)。作者简介:李佳伟,博士生,研究领域为高超声速力 /热/结构多场耦合。 E-mail: ljwnuaa2010@nuaa.edu.cn通讯作者:王江峰,博士,教授,研究领域为高超声速力 /热/结构多场耦合。 E-mail: wangjf@nuaa.edu.cn
|