推进技术 ›› 2019, Vol. 40 ›› Issue (1): 76-83.

• 气动热力学 • 上一篇    下一篇

内转式进气道自起动性能研究

杨大伟1,2,余安远1,韩亦宇1,卫锋1,丁国昊1,曲俐鹏1   

  1. 中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000;西北工业大学航空学院,陕西西安 710072,中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000,中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000,中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000,中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000,中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室,四川绵阳 621000
  • 发布日期:2021-08-15
  • 作者简介:杨大伟,硕士,工程师,研究领域为高超声速进气道。 E-mail: yangdawei8603@hotmail.com 通讯作者:余安远,博士,研究员,研究领域为高超声速机体 /推进一体化。

Study on Self-Starting Characteristics of an Inward Turning Inlet

  1. Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China;School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China,Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China,Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China,Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China,Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China and Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000,China
  • Published:2021-08-15

摘要: 为了研究内转式进气道的自起动性能以及下壁面泄流对自起动的影响规律,开展了数值计算和风洞实验,数值计算采用准定常的方法,风洞实验通过阴影录像以及下壁面丝线显示相结合的方法确定进气道的起动状态。结果表明 Ma5、攻角 0°时进气道不能自起动,下壁面存在大范围的三维流动分离,流动损失严重。为了提高进气道的自起动能力,在下壁面距前缘 400mm位置开孔泄流,开孔区域约 100mm×40mm,开孔率 0.2,实验模型孔径 3mm;研究表明,泄流后进气道顺利自起动,总压恢复系数提高了 0.25,泄流量损失仅为捕获流量的 1%。进一步数值研究表明,泄流构型在攻角 0°时的自起动马赫数在 4.3~4.4,泄流极大地拓宽了进气道的工作范围。

关键词: 内转式进气道;起动;数值模拟;风洞实验;泄流

Abstract: Aiming at a detailed investigation on the self-starting characteristics of an inward turning inlet, and the influence of bleeding at the down-wall,studies using both numerical simulations and wind tunnel experi.ments were carried out. The numerical simulations are conducted using quasi-steady methods. In the experi.ments,the surface tuft flow visualization technique is used to detect the starting state of the inlet,combined with shadowgraph images. Both numerical and experimental results show that the inlet can not self-start at Ma5,at. tack angle 0°,and there are large-scale flow separations at the down-wall,leading to severe flow loss. In order to enhance the self-starting capability of the inlet,a porous region composed of a large amount of bleeding holes whose diameters are 3mm is used at 400mm downstream of the leading edge of the down-wall. The area of the re.gion is 100mm×40mm and the bleeding porosity is 0.2. Results show that with the help of the bleeding holes,the inlet self-starts successfully and the total pressure recovery coefficient increases by 0.25,the flux loss due to the bleeding holes is only 1% of the captured mass flow rate. Further numerical simulations show that the self-start.ing Mach number of the inlet with bleeding holes is between Ma4.3 and Ma4.4 at attack angle 0°,indicating that

Key words: Inward turning inlet;Self-starting;Numerical simulation;Wind tunnel experiment;Bleed.