[1] Metzger D E, Bunker R S, Chyu M K. Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel[J]. Journal of Heat Transfer, 1989, 111(1):73-79.
[2] Bunker R S. A Review of Turbine Blade Tip Heat Transfer[J]. Annals of the New York Academy of Sciences, 2001, 934(1).
[3] Azad G S, Han J C, Teng S, et al. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip[J]. Journal of Turbomachinery, 2000, 122(4): 717-724.
[4] Kwak J S, Han J C. Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade[J]. Journal of Heat Transfer, 2002, 125(3):494.
[5] Yang H, Acharya S, Ekkad S V, et al. Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade with a Squealer-Tip[R]. ASME GT 2002-30193.
[6] Ahn J, Mhetras S, Han J C, et al. Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint[J]. Journal of Heat Transfer, 2005, 127(5):521-530.
[7] Yang H, Chen H C, Han J C. Film-Cooling Prediction on Turbine Blade Tip with Various Film Hole Configurations[J]. Journal of Thermophysics & Heat Transfer, 2015, 20(3): 558-568.
[8] 李广超, 朱慧人, 白江涛, 等. 气膜孔布局对前缘气膜冷却效率影响的实验[J]. 推进技术, 2008, 29(2):153-157. (LI Guang-chao, ZHU Hui-ren, BAI Jiang-tao, et al. Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J]. Journal of Propulsion Technology, 2008, 29(2):153-157.)
[9] 韩昌, 任静, 蒋洪德. 多参数对叶顶气膜冷却的影响[J]. 工程热物理学报, 2012, 33(9): 1501-1504.
[10] 王文三, 唐菲, 赵庆军, 等. 涡轮叶顶冷却布置对叶顶传热冷却性能的影响[J]. 工程热物理学报, 2012, 33(3): 393-396.
[11] 杜昆, 宋立明, 李军. 凹槽状叶顶涡轮叶片传热特性的数值研究[J]. 推进技术, 2014, 35(5): 618-623. (DU Kun, SONG Li-ming, LI Jun. Numerical Investigations on Heat Transfer Characteristics of Turbine Blade with Squealer Tip[J]. Journal of Propulsion Technology, 2014, 35(5): 618-623.)
[12] Dennis B H, Yegorovegorov I, Sobieczky H, et al. Parallel Thermoelasticity Optimization of 3-D Serpentine Cooling Passages in Turbine Blades[J]. International Journal of Turbo & Jet Engines, 2004, 21(1): 57-68.
[13] Talya S, Chattopadhyay A, Rajadas J. Multidisciplinary Analysis and Design Optimization Procedure for Cooled Gas Turbine Blades[R]. AIAA 2000-4877.
[14] Kang Y S, Rhee D H, Kim C T, et al. Aerodynamic Optimization of Axial Turbine Tip Cavity with Approximation Model[R]. ASME TBTS 2013-2079.
[15] 岂兴明, 朴英. 涡轮叶顶间隙形态的优化[J]. 西安通大学学报吉林大学学报(工学版), 2009, 39(4):874-879.
[16] 卢少鹏, 迟重然, 温风波, 等. 考虑气膜冷却的涡轮静叶多目标优化[J]. 工程热物理学报, 2013, 34(6):1036-1041.
[17] Chiba K, Oyama A, Obayashi S, et al. Multidisciplinary Design Optimization and Data Mining for Transonic Regional-Jet Wing[J]. Journal of Aircraft, 2007, 44(4): 1100–1112.
[18] Oyama A, Nonomura T, Fujii K. Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition[R]. AIAA 2009-4000.
[19] Kipouros T, Mleczko M, Savill A M. Use of Parallel Coordinates for Post-Analyses of Multi-Objective Aerodynamic Design Optimisation in Turbomachinery[R]. AIAA 2008-2138.
[20] Koziel S, Tesfahunegn Y A, Amrit A, et al. Rapid Multi-Objective Aerodynamic Design Using Co-Kriging and Space Mapping[R]. AIAA 2016-0418.
[21] Donald R. Jones M S, William J Welch. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13: 455–492.
[22] Chenxi LI, Zhengdong GUO, Liming SONG, et al. Design Optimization of a 3D Parameterized Vane Cascade with Non-Axisymmetric Endwall Based on a Modified EGO Algorithm and Data Mining Techniques[R]. ASME GT 2017-63738.
[23] Guo Z, Song L, Zhou Z, et al. Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller [J]. Journal of Engineering for Gas Turbines & Power, 2015, 137(9).
[24] Li E, Wang H. Bi-Direction Multi-Surrogate Assisted Global Optimization[J]. Engineering Computations, 2016, 33(3): 646-666.(编辑:田佳莹) 收稿日期:2017-12-18;修订日期:2018-02-23。作者简介:李琛玺,博士生,研究领域为叶轮机械气动热力学与优化设计。E-mail: lichenxi@stu.xjtu.edu.cn通讯作者:宋立明,博士,教授,研究领域为叶轮机械气动优化设计。E-mail: songlm@mail.xjtu.edu.cn
|