[1] Akbari P, Nalim R, Mueller N. A Review of Wave Rotor Technology and Its Applications[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(4): 717-735.
[2] Wu Y, Ma F, Yang V. System Performance and Thermodynamic Cycle Analysis of Airbreathing Pulse Detonation Engines[J]. Journal of Propulsion and Power, 2003, 19(4): 556-567.
[3] Elharis T, Wijeyakulasuriya S, Nalim M, et al. Analysis of Deflagrative Combustion in a Wave-Rotor Constant-Volume Combustor[R]. AIAA 2011-583.
[4] Akbari P, Nalim R, Li H. Analytic Aerothermodynamic Cycle Model of the Combustion Wave Rotor in a Gas Turbine Engine[R]. IECEC 2006-4176.
[5] Akbari P, Szpynda E, Nalim R. Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: A Progress Review[R]. AIAA 2007-5055.
[6] 巩二磊, 李建中, 韩启祥, 等. 内燃波转子非定常流动和燃烧特性分析[J]. 南京航空航天大学学报, 2013, 45(3): 309-315.
[7] Khalid S A, Banerjee A, Akbari P, et al. Two-Dimensional Numerical Modeling of Mixture Inflow in a Combustion Wave Rotor[R]. IECEC 2006-4125.
[8] Paxson D E, Wilson J. An Improved Numerical Model for Wave Rotor Design and Analysis[C]. Reno: 31st Aerospace Sciences Meeting, 1993.
[9] Okamoto K, Nagashima T. Visualization of Wave Rotor Inner Flow Dynamics[J]. Journal of Propulsion and Power, 2007, 23(2): 292-300.
[10] Matsutomi Y, Meyer S, Wijeyakulasuriya S, et al. Experimental Investigation on the Wave Rotor Constant Volume Combustor[R]. AIAA 2010-7043.
[11] Khan M N, Paik K, Nalim M R. 3D Computation for Torch Jet Ignition of Premixed Methane-Hydrogen-Air Blends in a Pre-Chamber Constant Volume Combustor at Variable Pre-Chamber Pressure[R]. AIAA 2015-3784.
[12] 巩二磊, 李建中, 刘博强, 等. 内燃波转子泄漏及密封问题分析[J]. 推进技术, 2016, 37(10):1952-1957. (GONG Er-lei, LI Jian-zhong, LIU Bo-qiang, et al. Research on Jet Performance of a Hot Jet Igniter Device for Wave Rotor Combustor Ignition[J]. Journal of Propulsion Technology, 2016, 37 (10): 1952-1957.)
[13] 李建中, 巩二磊, 袁丽, 等. 内燃波转子燃料填充方案研究[J]. 推进技术, 2016, 37(11): 2120-2125. (LI Jian-zhong, GONG Er-lei, YUAN Li, et al. Investigation on Fuel Injection Strategies of Wave Rotor Combustor [J]. Journal of Propulsion Technology, 2016, 37 (11): 2120-2125.)
[14] Eder A, Brehm N. Analytical and Experimental Insights into Fast Deflagrations, Detonations, and the Deflagration-to-Detonation Transition Process[J]. Heat & Mass Transfer, 2001, 37(6): 543-548.
[15] Ettner F, Vollmer K G, Sattelmayer T. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures[J]. Journal of Combustion, 2014, (5): 1-15.
[16] Saif M, Wang W, Pekalski A, et al. Chapman–Jouguet Deflagrations and their Transition to Detonation[J]. Proceedings of the Combustion Institute, 2016, 106(1):181-193.
[17] Ciccarelli G, Johansen C T, Parravani M. The Role of Shock–Flame Interactions on Flame Acceleration in an Obstacle Laden Channel[J]. Combustion & Flame, 2010, 157(11): 2125-2136.
[18] Ciccarelli G, Fowler C J, Bardon M. Effect of Obstacle Size and Spacing on the Initial Stage of Flame Acceleration in a Rough Tube[J]. Shock Waves, 2005, 14(3):161-166. 收稿日期:2017-11-24;修订日期:2018-03-09。基金项目:国家自然科学基金(51476077)。作者简介:李维,硕士生,研究领域为非定常燃烧。E-mail: 1060556311@qq.com通讯作者:李建中,博士,副教授,研究领域为燃烧机理和多相流。E-mail: ljzh0629@nuaa.edu.cn(编辑:梅瑛)
|