[1] 周立新, 葛李虎. 高深宽比冷却通道的流动与传热数值分析[J]. 火箭推进, 1996, (4): 38-55.
[2] 张锋, 仲伟聪. 膜冷却推力室传热计算研究[J]. 火箭推进, 2009, 35(4): 34-37.
[3] 张忠利, 郭斌. 推力室的喷管及套筒的气动传热研究[J]. 火箭推进, 1999, (6): 18-31.
[4] Lorenzo Valdevit, Natasha Vermaak, Frank W Zok, et al. Design of Actively Cooled Pannels for Scramjets [R]. AIAA 2006-8069.
[5] 蒋劲, 张若凌, 乐嘉陵. 超燃冲压发动机再生冷却热结构设计的计算工具[J]. 实验流体力学, 2006, 20(3): 1-7.
[6] 蒋劲, 张若凌. 再生冷却超燃冲压发动机传热计算分析与试验[J]. 推进技术, 2012, 33(3): 443-449. (JIANG Jin, ZHANG Ruo-ling. Thermal Analysis and Experiment Validation of Regenerative Cooling Scramjet [J]. Journal of Propulsion Technology, 2012, 33(3): 443-449.)
[7] Dufour E, Bouchez M. Semi-Empirical and CFD Analysis of Actively Cooled Dual-Mode Ramjets[R]. AIAA 2002-5126.
[8] Bouchez M, Dufour E, Darian E. Semi-Empirical and CFD Analysis of Actively Cooled Dual-Mode Ramjets: 2006 Status[R]. AIAA 2006-8073.
[9] Zhang R L, Jiang J, Le J L. Calculational Tools of Thermal Exchange in Regeneratively Cooled Scramjet [R]. AJCPP 2006-22224.
[10] Zhang R L, Le J L, Liu W X, et al. The Study on Coolant Flow and Heat Transfer along the Cooling Channels in Scramjet [R]. ISABE 2011-1518.
[11] Zhong F, Brown G L. A 3-Dimensional, Coupled, DNS, Heat Transfer Model and Solution for Multi-Hole Cooling[J]. International Journal of Heat and Mass Transfer, 2007, 50(7-8): 1328-1343.
[12] 仲峰泉, 范学军, 俞刚. 带主动冷却的超声速燃烧室传热分析[J]. 推进技术, 2009, 30(5): 513-532. (ZHONG Feng-quan, FAN Xue-jun, YU Gang. Heat Transfer Analysis for Actively Cooled Supersonic Combustor [J]. Journal of Propulsion Technology, 2009, 30(5): 513-532.)
[13] Zhong F Q, Fan X J, Yu G, et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[14] 陈同银, 仲峰泉, 王晶, 等. 超声速燃烧辅助喷油支板的主动冷却结构设计研究[C]. 无锡:第三届高超声速科技学术会议, 2010.
[15] 陆阳, 王新竹, 李龙, 等. 再生主动冷却结构耦合传热分析方法研究[C]. 桂林:高超声速专题研讨会暨第五届全国高超声速科学技术会议, 2012.
[16] 王新竹, 张泰昌, 陆阳, 等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术, 2014, 35(2): 213-219. (WANG Xin-zhu, ZHANG Tai-chang, LU Yang, et al. An Iterative Analysis and Design Method for Study of Coupling Processes of Combustion and Heat Transfer in Actively-Cooled Scramjet Combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 213-219.)
[17] 杨样, 张磊, 张若凌, 等. 超燃冲压发动机燃烧室主动冷却设计研究[J]. 推进技术, 2014, 35(2): 208-212. (YANG Yang, ZHANG Lei, ZHANG Ruo-ling, et al. Design Research of an Actively Fuel-Cooled Scramjet Combustor [J]. Journal of Propulsion Technology, 2014, 35(2): 208-212.)
[18] 白瑜光, 张玉光, 原志超, 等. 发动机燃烧室主动冷却管道的热-力耦合分析[J]. 推进技术, 2013, 34(12): 1621-1627. (BAI Yu-guang, ZHANG Yu-guang, YUAN Zhi-chao, et al. Analysis for Thermal and Mechanical Coupling in Active Cooling Channels for Engine Combustor[J]. Journal of Propulsion Technology, 2013, 34(12): 1621-1627.)
[19] 高效伟, 刘健, 彭海峰. 集成单元边界元法及其在主动冷却热防护系统分析中的应用[J]. 力学学报, 2016, (4): 994-1003.
[20] 张明哲, 艾青, 刘华. 超声速燃烧室再生冷却结构对传热的影响分析[J]. 节能技术, 2014, 32(4): 308-323.
[21] 程荣军, 程玉民. 带源参数的二维热传导反问题的无网格方法[J]. 力学学报, 2007, 39(6): 843-847.
[22] 宋宏伟, 纪科星, 黄晨光, 等. 主动冷却通道热流固耦合三维数值计算及构型应力分析[C]. 无锡:第三届高超声速科技学术会议, 2010.
[23] 金峰, 刘升君, 吉洪湖. 高超声速冲压发动机壁面的再生冷却数值模拟[C]. 无锡:第三届高超声速科技学术会议, 2010.
[24] Heiser W H, Pratt D T. Hypersonic Airbreathing Propulsion [M]. USA: AIAA Inc, 2002.
[25] Eckert E R G. Engineering Relations for Friction and Heat Transfer to Surface in High Velocity Flow[J]. Journal of the Aeronautical Sciences, 1955, 22(8): 585-587.
[26] 王勖成, 邵敏. 有限单元法基本原理和数值方法(第2版) [M]. 北京:清华大学出版社, 2003. 收稿日期:2018-01-02;修订日期:2018-04-23。通讯作者:黄日鑫,博士生,工程师,研究领域为燃烧系统设计。 E-mail: huangrx@aliyun.com(编辑:史亚红)
|