推进技术 ›› 2019, Vol. 40 ›› Issue (2): 376-381.

• 燃烧 传热 • 上一篇    下一篇

超声速气流中复杂冷却结构的传热分析方法

黄日鑫1,谭永华2,刘军彦1,杨宝娥1   

  1. 西安航天动力研究所,陕西 西安 710100,航天推进技术研究院,陕西 西安 710100,西安航天动力研究所,陕西 西安 710100,西安航天动力研究所,陕西 西安 710100
  • 发布日期:2021-08-15

Thermal Analysis Method on Complex Regenerative Cooling Structure in Supersonic Flows

  1. Xi’an Aerospace Propulsion Institute,Xi’an 710100,China,Academy of Aerospace Propulsion Technology,Xi’an 710100,China,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China and Xi’an Aerospace Propulsion Institute,Xi’an 710100,China
  • Published:2021-08-15

摘要: 针对应用于高超声速吸气式发动机中的复杂再生冷却结构,为了更好地对其进行传热性能评估,在充分借鉴液体火箭发动机传热分析方法的基础上,集成多种成熟高效的技术,建立了一种解耦的传热分析方法。该方法首先借助计算流体力学技术确定结构件工作的热环境,提取必要的参数后依据半经验关系式确定气侧的换热边界条件;然后,通过将冷却流动假设成一维流动,根据换热准则确定液侧的换热边界;最后,对冷却结构进行有限单元离散,计算传热过程,获得温度场特征。该方法将换热与导热过程解耦,降低了研究问题的复杂性,适用于复杂构型的热防护设计。通过后掠尖缘再生冷却支板的热防护试验,证实了传热分析方法的可靠性,且显示算法对本例的预测误差约在8%左右。

关键词: 超声速气流;再生冷却;有限元方法;参考焓法;传热分析

Abstract: In order to make a better thermal analysis of complex regenerative cooling structure in air breathing engines for hypersonic flight, a decoupled method integrated mature and efficient techniques for supersonic flows is developed, based on the thoughts from the area of traditional liquid rocket engines. The first step of the method is to determine the parameters on the convective heat exchange boundaries to the gas side, using semi-experience relations with the necessary main flow environment extracted from calculations performed by CFD technology. Then the second step turns to the boundaries to the liquid side, according to proper heat exchange rules by assuming that the flow in the cooling channels is only one dimensional. In the last step, the finite element method is used to discrete the solid domain, and the heat conduction is performed to obtain the temperature characteristics. This method decouples the flow path of heat exchange and conduction, and simplifies the practical problem; meanwhile, it is adapt to structures of complex geometries. The method is validated by the experiment of thermal protection for a swept blade-like regenerative cooling strut. The results indicate a reasonable reliability of this method and the predicted error is about 8%.

Key words: Supersonic flows;Regenerative cooling;Finite element methods;Reference enthalpy method;Thermal analysis