[1] Lu F K, Braun E M, Massa L, et al. Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts[C]. California: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011.
[2] Voitsckhovskii. Stationary Spin Detonation[J]. Doklady Akademii Nayk, 1959, 129(6): 1254-1256.
[3] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonation of Fuel-Air Mixtures[J]. Combustion, Explosion, and Shock Waves, 2006, 42(4): 107-115.
[4] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
[5] Dausen D F, Brophy C M, Wright R G, et al. Design of an Optically-Accessible Rotating Detonation Engine[R]. AIAA 2012-3944.
[6] Naples A, Hoke J, Karnesky J, et al. Flowfield Characterization of a Rotating Detonation Engine[R]. AIAA 2013-0278.
[7] Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine[J]. Combustion and Flame, 2017, 176: 12–22.
[8] Rankin B A. Imaging of OH Chemiluminescence in an Optically Accessible Nonpremixed Rotating Detonation Engine[R]. AIAA 2015-1604.
[9] Rankin B A, Fugger C A, Richardson D R. Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging[R]. AIAA 2016-1198.
[10] Rankin B A, Codoni J R, Cho K Y. Mid-Infrared Imaging of an Optically Accessible Non-Premixed Hydrogen-Air Rotating Detonation Engine[R]. AIAA 2017-0370.
[11] Schwer D A, Kailasanath K. Physics of Heat-Release in Rotating Detonation Engines[R]. AIAA 2015-1602.
[12] Schwer D A, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[R]. AIAA 2011-581.
[13] Rankin B A, Fotia M L. Experimental and Numerical Evaluation of Pressure Gain Combustion in a Rotating Detonation Engine[R]. AIAA 2015-0877.
[14] Zhdan S A, Bykovskii F A, Vedernikov E F. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen Oxygen Mixture[J]. Combustion, Explosion, and Shock Waves, 2007, 43(4): 449-459.
[15] Folusiak M, Swiderski K, Kobiera A, et al. Assessment of Numerical Simulations of CDE Combustion Chamber[C]. Taipei: 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2013.
[16] Swiderski K, Folusiak M, Lukasik M, et al. Three Dimensional Numerical Study of the Propulsion System based on Rotating Detonation Using Adaptive Mesh Refinement[C]. Taipei: 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2013.
[17] Dmitry M Davidenko, Yohann Eude, Iskender G?kalp.Theoretical and Numerical Studies on Continuous Detonation Wave Engines[R]. AIAA 2011-2334.
[18] Taki S, Fujiwara T. Numerical Analysis of Two-Dimensional Nonsteady Detonations[J]. AIAA Journal, 1978, 16(1): 73-77.
[19] Fujii J, Kumazawa Y, Matsuo A, et al. Numerical Investigation on Detonation Velocity in Rotating Detonation Engine Chamber[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2665-2672.
[20] 王健平, 邵业涛. 连续爆轰发动机的二维数值模拟研究[J]. 航空动力学报, 2009, 24(5): 980-986.
[21] 武丹, 刘岩, 王健平. 连续旋转爆轰发动机参数特性的三维数值模拟[J]. 航空动力学报, 2015, 30(7): 1576-1582.
[22] Yao Songbai, Tang Xinmeng, Luan Mingyi, et al. Numerical Study of Hollow Rotating Detonation Engine with Different Fuel Injection Area Ratios[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2649-2655.
[23] 潘振华, 范宝春, 张旭东, 等. 连续旋转爆轰三维流场的数值模拟[J]. 兵工学报, 2012, 33(5): 594-599.
[24] 马虎, 武晓松, 王栋, 等. 旋转爆震发动机数值研究[J]. 推进技术, 2012, 33(5): 820-825. (MA Hu, WU Xiao-song, WANG Dong, et al. Numerical Investigation for Rotating Detonation Engine[J]. Journal of Propulsion Technology, 2012, 33(5): 820-825.)
[25] 刘世杰, 林志勇, 孙明波, 等. 旋转爆震波发动机二维数值模拟[J]. 推进技术, 2010, 31(5): 634-640. (LIU Shi-jie, LIN Zhi-yong, SUN Ming-bo, et al. Two-dimensional Numerical Simulation of Rotating Detonation Wave Engine[J]. Journal of Propulsion Technology, 2010, 31(5): 634-640.)
[26] 刘世杰, 覃慧, 林志勇, 等. 连续旋转爆震波细致结构及自持机理[J]. 推进技术, 2011, 32(3): 431-436. (LIU Shi-jie, QIN Hui, LIN Zhi-yong, et al. Detailed Structure and Propagation Mechanism Research on Continuous Rotating Detonation Wave[J]. Journal of Propulsion Technology, 2011, 32(3): 431-436.)
[27] Frolov S M, Dubrovskii A V, Ivanov V S. Three-Dimensional Numerical Simulation of the Operation of a Rotation-Detonation Chamber with Separate Supply of Fuel and Oxidizer[J]. Russian Journal of Physical Chemistry, 2013, 7(1): 35-43.
[28] Cocks P A, Holley A T. High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine[R]. AIAA 2016-0125.
[29] 马虎, 武晓松, Jan Kindracki, 等. 分开喷注方式下旋转爆震发动机三维数值模拟[J]. 燃烧科学与技术, 2016, 22(1): 9-14.
[30] 徐雪阳, 卓长飞, 武晓松, 等. 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报, 2016, 37(4): 1184-1195.
[31] 陈洁, 王栋, 马虎, 等. 轴向长度对旋转爆震发动机的影响[J]. 航空动力学报, 2013, 28(4): 844-849.
[32] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙:国防科学技术大学, 2012.(编辑:朱立影) 收稿日期:2018-02-04;修订日期:2018-03-13。基金项目:风雷青年创新基金(FLYIF20160301);国家自然科学基金(51706237;11602207;91641103)。通讯作者:郑榆山,硕士,研究实习员,研究领域为高超声速推进技术。E-mail: myzhengys@126.com
|