[1] 蔡尊, 王振国, 孙明波, 等. 超声速气流中凹腔主动喷注的强迫点火过程实验研究[J]. 推进技术, 2014, 35(12): 1661-1668. (CAI Zun, WANG Zhen-guo, SUN Ming-bo, et al. Experimental Study of Forced Ignition Process with Active Cavity Injection in a Supersonic Flow[J]. Journal of Propulsion Technology, 2014, 35(12): 1661-1668.)
[2] 蔡尊, 王振国, 李西鹏, 等. 基于超声速气流中凹腔主动喷注的强迫点火方案研究[J]. 推进技术, 2015, 36(8): 1186-1192. (CAI Zun, WANG Zhen-guo, LI Xi-peng, et al. Investigation of Forced Ignition Scheme Based on Active Cavity Injection in a Supersonic Flow[J]. Journal of Propulsion Technology, 2015, 36(8): 1186-1192.)
[3] 杜玲, 李范春, 马雪松, 等. 凹腔火焰稳定器组件界面的适配性研究[J]. 推进技术, 2016, 37(12):2359-2365. (DU Ling, LI Fan-chun, MA Xue-song, et al. Suitability Investigation about Components Interface of Flame Holder with Cavity[J]. Journal of Propulsion Technology, 2016, 37(12): 2359-2365.)
[4] Timoshenko. Strength of Materials, Part Ⅱ: Advanced Theory and Problems[M]. Princeton: Van Nostrand, 1941.
[5] Ambartsumyan. 不同模量理论[M]. 邬瑞锋, 张允真, 译. 北京:中国铁道出版社, 1986.
[6] Khan K, Patle B P, Nath Y. Effect of Bimodularity on Frequency Response of Cylindrical Panels Using Galerkin Time Domain Approach[J]. Indian Academy of Sciences, 2010, 35(6): 721-737.
[7] Khan A H, Patel B P. Periodic Response of Bimodular Laminated Composite Cylindrical Panels with and Without Geometric Nonlinearity[J]. International Journal of Non-Linear Mechanics, 2014, 67: 209-217.
[8] Xie W H, Peng Z J, Meng S H, et al. GWFMM Model for Bi-Modulus Orthotropic Materials: Application to Mechanical Analysis of 4D-C/C Composites[J]. Composite Strctures, 2016, 150:132-138.
[9] Radostin A, Nazarov V, Kiyashko S. Propagation of Nonlinear Acoustic Waves in Bimodular Media with Linear Dissipation[J]. Wave Motion, 2013, 50(2): 191-196.
[10] Katicha S W, Flintsch G W. Bimodular Analysis of Hot-Mix Asphalt [J]. Road Materials and Pavement Design, 2010, 11(4): 917-946.
[11] 杜玲, 李范春, 郭雪莲, 等. 基于应力球张量法的不同模量陶瓷梁有限元分析[J]. 推进技术, 2015, 36(8): 1229-1235. (DU Ling, LI Fan-chun, GUO Xue-lian, et al. Finite Element Analysis of Ceramic Beam with Different Modulus Based on Stress Balls Tensor Method [J]. Journal of Propulsion Technology, 2015, 36(8): 1229-1235.)
[12] 杜玲, 李范春. 受均布载荷的双模量陶瓷简支梁的有限元计算[J]. 推进技术, 2016, 37(7): 1356-1363.(DU Ling, LI Fan-chun. Finite Element Calculation of Simply Supported Beam with Biomodulus Ceramic Subjected to Uniform Load [J]. Journal of Propulsion Technology, 2016, 37(7): 1356-1363.)
[13] 张洪武, 张亮, 高强. 拉压不同模量材料的参变量变分原理和有限元方法[J]. 工程力学, 2012, 29(8): 22-27.
[14] 姚文娟, 叶志明. 不同拉压模量连续梁的解析解[J]. 力学季刊, 2011, 32(1): 68-73.
[15] 王铭慧, 赵永刚. 拉压弹性模量不等材料简支梁的线性振动问题[J]. 甘肃科学学报, 2014, 26(5): 10-13.
[16] 姚熊亮. 结构动力学[M]. 哈尔滨:哈尔滨工程大学出版社, 2007.
[17] 刘相斌, 宋宏伟. 不同模量弯曲梁的自由振动[J]. 大连民族学院学报, 2007, 9(5): 104-107. 收稿日期:2018-01-16;修订日期:2018-03-13。基金项目:国家自然科学基金(5100906)。作者简介:汪颖异,硕士生,研究领域为结构设计与分析。E-mail: 2571898488@qq.com通讯作者:李范春,博士,教授,研究领域为结构设计与分析。E-mail: lee_fc@126.com(编辑:史亚红)
|