[1] Mehendale A B, Han J C. Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer[J]. Journal of Turbomachinery, 1992, 114(4): 707–715.
[2] Mehendale A B, Han J C. Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient[J]. Journal of Heat Mass Transfer, 1993, 36(15): 3723–3730.
[3] Park S S, Ye J K, Kwak J S. Film-Cooling Effectiveness of Antivortex Holes at Three Different Mainstream Turbulence Levels[J]. Journal of Propulsion & Power, 2017, 33(4):1-9.
[4] Ekkad S V, Han J C, Du H. Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density[J].Journal of Turbomachinery, 1998, 120: 594–600.
[5] 朱惠人, 许都纯, 郭涛, 等. 叶片前缘气膜冷却换热的实验研究[J]. 推进技术, 1999, 20(2): 64-68. (ZHU Hui-ren, XU Du-chun, GUO Tao, et al. Experimental Investigation of Film Cooling Heat Transfer on Turbine Blade Leading Edge[J]. Journal of Propulsion Technology, 1999, 20(2): 64-68.)
[6] 李广超, 朱惠人, 廖乃冰, 等. 带单排气膜孔的叶片前缘气膜冷却换热实验[J]. 推进技术, 2008, 29(3):290-294. (LI Guang-chao, ZHU Hui-ren, LIAO Nai-bing, et al. Experimental Investigation of Leading Edge Film Cooling Heat Transfer with a Row of Film Cooling Holes[J]. Journal of Propulsion Technology, 2008, 29(3): 290-294.)
[7] 李广超, 朱惠人, 白江涛, 等. 气膜孔布局对前缘气膜冷却效率影响的实验[J]. 推进技术, 2008, 29(2):153-157. (LI Guang-chao, ZHU Hui-ren, BAI Jiang-tao, et al. Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J]. Journal of Propulsion Technology, 2008, 29(2):153-157.)
[8] 赵丹, 刘存良, 朱惠人, 等. 涡轮叶片前缘对冲孔排气膜冷却特性的数值研究[J]. 航空动力学报, 2017, 32(11): 2609-2618.
[9] Liu C L , Zhu H R, Zhang Z W. Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Hole Pitches[R]. ASME GT 2012-6827.
[10] Kim Y J, Kim S M. Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling[J]. International Journal of Heat & Mass Transfer, 2004, 47(2):245-256.
[11] Funazaki Ken-ichi, Kawabata H, Takahashi D, et al. Experimental and Numerical Studies on Leading Edge Film Cooling Performance: Effects of Hole Exit Shape and Freestream Turbulence[R]. ASME GT 2012-6821.
[12] Chowdhury N H K, Qureshi S A, Zhang M, et al. Influence of Turbine Blade Leading Edge Shape on Film Cooling with Cylindrical Holes[J]. International Journal of Heat & Mass Transfer, 2017, 115: 895-908.
[13] James R W, Joshua B A. Convex Curvature Effects on Film Cooling Adiabatic Effectiveness[R]. ASME GT 2013-95243.
[14] Goldstein R J, Stone L D. Row-of-Holes Film Cooling of a Convex and a Concave Wall at Low Injection Angles[J]. Journal of Turbomachinery, 1997, 119(3): 574-579.
[15] Qin Y, Ren J, Jiang H. Effects of Streamwise Pressure Gradient and Convex Curvature on Film Cooling Effectiveness[R]. ASME GT 2014-25808.
[16] Rozati A, Tafti D K. Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer-LES Investigation[J]. International Journal of Heat & Fluid Flow, 2008, 29(4): 857-873.
[17] 谭晓茗, 朱兴丹, 郭文, 等. 涡轮叶片前缘气膜冷却换热实验[J]. 航空动力学报, 2014, 29(11): 2672-2678.
[18] Guelailia A, Khorsi A, Hamidou M K. Computation of Leading Edge Film Cooling from a Console Geometry (Converging Slot Hole)[J]. Thermophysics & Aeromechanics, 2016, 23(1): 33-42.
[19] Liu C, Zhu H R, Fu Z Y, et al. The Effects of Inlet Reynolds Number, Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade[R]. ASME GT 2015-42888
[20] A C Nix, A C Smith, T E Diller. High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade[R]. ASME GT 2002-30523.
[21] 刘聪, 朱惠人, 付仲议, 等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术, 2016, 37(6):1142-1150. (LIU Cong, ZHU Hui-ren, FU Zhong-yi, et al. Experimental Study of Film Cooling Characteristics for Dust-Pan Shaped Holes on Suction Side in Turbine Guide Vane[J]. Journal of Propulsion Technology, 2016, 37(6): 1142-1150.)
[22] Fu Z Y, Zhu H R, Liu C L, et al. An Experimental Investigation of Full-Coverage Film Cooling Effectiveness and Heat Transfer Coefficient of a Turbine Guide Vane in a Linear Transonic Cascade[R]. ASME GT 2012-56839.
[23] 李红才, 朱惠人, 任战鹏, 等. 短周期跨声速风洞叶栅换热实验验证[J]. 西安交通大学学报, 2013, 47(9): 49-54. 收稿日期:2018-02-25;修订日期:2018-04-24。基金项目:国家重点基础研究发展规划资助项目(2013CB035702)。作者简介:付仲议,博士生,研究领域为航空发动机高温部件冷却。E-mail: 252922326@qq.com通讯作者:朱惠人,博士,教授,研究领域为航空发动机高温部件冷却及空气系统。E-mail: zhuhr@nwpu.edu.cn(编辑:史亚红)
|