[1] 曹玉璋. 航空发动机传热学[M]. 北京:北京航空航天大学出版社, 2005.
[2] 李广超, 柏树生, 吴冬, 等. 气膜孔形状对涡轮叶片气膜冷却影响的研究进展[J]. 热能动力工程, 2010, 25(6): 5-9.
[3] Aga V, Rose M G, Abhari R S, et al. Experimental Flow Structure Investigation of Compound Angled Film Cooling[J]. Journal of Turbomachinery, 2008, 130(3).
[4] Aga V, Abhari R S. Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer[J]. Journal of Turbomachinery, 2011, 133(3).
[5] 刘捷, 韩振兴, 蒋洪德, 等. 不同复合角对平板气膜冷却特性影响的实验研究[J]. 工程热物理学报, 2008, 29(8): 409-411.
[6] Gritsch M, Schulz A, Wittig S. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits[J]. Journal of Turbomachinery, 1998, 120(3).
[7] 徐红洲, 刘松龄, 许都纯. 单孔复合角气膜冷却的流动与传热的实验研究[J]. 推进技术, 1996, 17(6):12-17. (XU Hong-zhou, LIU Song-ling, XU Du-chun. Experimental Investigation on Flow and Heat Transfer Around Single Film Cooling Hole with Compound-Angle[J]. Journal of Propulsion Technology, 1996, 17(6): 12-17.)
[8] Gritsch M, Colban W, Scha?R H, et al. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes[J]. Journal of Turbomachinery, 2005, 127(4): 718-725.
[9] Barigozzi G, Franchini G, Perdichizzi A. The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling, Part I: Aerodynamic Results[R]. ASME GT 2007-27077.
[10] Na S, Shih T I P. Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp[J]. Journal of Heat Transfer, 2007, 129(4): 931-938.
[11] 李佳, 韩昌, 任静, 等. 基于压敏漆的带横槽气膜冷却实验与数值研究[J]. 工程热物理学报, 2010, 31(2): 239-242.
[12] 李广超, 吴状, 刘永泉, 等. 孔间距对锯齿槽改善气膜冷却特性影响[J]. 推进技术, 2017, 38(5): 1065-1072. (LI Guang-chao, WU Zhuang, LIU Yong-quan, et al. Effects of Hole Pitch on Characteristics of Improving Film Cooling by Sawtooth Slots[J]. Journal of Propulsion Technology, 2017, 38(5): 1065-1072.)
[13] 李广超, 陈钰恺, 刘永泉, 等. 利用W型槽提高气膜冷却效率机理[J]. 推进技术, 2016, 37(3): 520-526.(LI Guang-chao, CHEN Yu-kai, LIU Yong-quan, et al. Mechanism on Increasing Film Cooling Effectiveness by W Shape Slots[J]. Journal of Propulsion Technology, 2016, 37(3): 520-526.)
[14] Li X C. Numerical Simulation on Fluid Flow and Heat Transfer of Film Cooling with Backward Injection[C].Washington: International Heat Transfer Conference,2010.
[15] Li X C, Subbuswamy G, Zhou J. Performance of Gas Turbine Film Cooling with Backward Injection[J]. Energy & Power Engineering, 2013, 5(4): 132-137.
[16] Chen A F, Li S, Han J. Film Cooling with Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique[R]. ASME GT 2014-26232.
[17] Prenter R, Hossain M A, Agricola L, et al. Experimental Characterization of Reverse-Oriented Film Cooling [R]. ASME GT 2017-64731.
[18] Singh K, Premachandran B, Ravi M R. Experimental and Numerical Studies on Film Cooling with Reverse/Backward Coolant Injection[J]. International Journal of Thermal Sciences, 2017, 111: 390-408.
[19] YANG, Chengfeng, ZHANG, et al. Influence of Multi-hole Arrangement on Cooling Film Development[J]. 中国航空学报(英文版), 2012, 25(2): 182-188.
[20] 胡娅萍, 吉洪湖, 郑妹, 等. 孔排布方式对多斜孔壁火焰筒传热特性影响的数值研究[J]. 推进技术, 2013, 34(5): 638-643. (HU Ya-ping, JI Hong-hu, ZHEN Mei, et al. Numerical Simulation of Effect of Hole Displacement on Heat Transfer Characteristics of an Effusion Cooled Flame Tube[J]. Journal of Propulsion Technology, 2013, 34(5): 638-643.)
[21] 王浪, 李雪英, 任静, 等. 两排圆孔的气膜冷却特性[J]. 工程热物理学报, 2017, 38(5): 1082-1086.
[22] 朱惠人, 郭涛, 许都纯. 双排簸箕形孔气膜冷却效率及其叠加算法[J]. 航空动力学报, 2006, 21(5):814-819.
[23] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001.
[24] Liu C L, Zhu H R, Bai J T. Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness[J]. International Journal of Heat & Mass Transfer, 2008, 51(25–26): 6208-6218.
[25] Chen A F, Li S J, Han J C. Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique[J]. Journal of Thermophysics & Heat Transfer, 2015, 29(4): 1-10. 收稿日期:2018-04-19;修订日期:2018-06-20。基金项目:国家自然科学基金(51406124);辽宁省自然科学基金(201602576)。通讯作者:李广超,博士,副教授,研究领域为航空发动机热端部件传热冷却。E-mail: ligc706@163.com(编辑:史亚红)
|