[1] 田立成, 赵成仁, 张天平, 等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术, 2017, 38(11):2411-2421. (TIAN Li-cheng, ZHAO Cheng-ren, ZHANG Tian-ping, et al. Flight Test Performance Evaluation of LHT-100 Hall Electric Propulsion System on SJ-17 Satellite[J]. Journal of Propulsion Technology, 2017, 38(11): 2411-2421.)
[2] 田立成, 高俊, 李兴坤, 等. LHT-100 自励磁霍尔推力器热特性测试和热真空实验研究[J]. 推进技术, 2016, 37(4): 793-800. (TIAN Li- cheng, GAO Jun, LI Xing-kun, et al. Experimental Study of Thermal Characteristics and Thermal Vacuum of LHT-100 Self-Excited Hall Thruster[J]. Journal of Propulsion Technology, 2016, 37(4): 793-800.)
[3] KIM V. Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters[J]. Journal of Propulsion and Power, 1998, 14(5): 736–743.
[4] Byers D C, Dankanich J W. Geosynchronous-Earth-Orbit Communication Satellite Deliveries with Integrated Electric Propulsion[J]. Journal of Propulsion and Power, 2008, 24(6): 1369-1375.
[5] 于达仁. 空间电推进原理[M]. 哈尔滨:哈尔滨工业大学出版社, 2014.
[6] Yan L, Wang P, Ouyang H, et al. Thermal Analysis of the Hall Thruster in Vacuum[J]. Vacuum, 2014, 108(20).
[7] Book C F, Walker M L R. Effect of Anode Temperature on Hall Thruster Performance[J]. Journal of Propulsion and Power, 2010, 26(5): 1036-1044.
[8] Miyasaka T, Furukawa T, Soga T, et al. Influence of Propellant-Inlet Condition on Hall Thruster Performance[C]. Toulouse: 28th International Electric Propulsion Conference, 2003.
[9] Dorf L, Semenov V, Raitses Y. Anode Sheath in Hall Thrusters[J]. Applied Physics Letters, 2003, 83(13): 2551-2553.
[10] Foster J E, Gallimore A D. An Investigation into the Role That a Transverse Magnetic Field Plays in the Formation of Large Anode Sheath Potentials[J]. Physics of Plasmas, 1996, 3(11): 4239-4249.
[11] Dorf L, Raitses Y, Fisch N J. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge[J]. Journal of Applied Physics, 2005, 97(10).
[12] Dorf L, Raitses Y, Fisch N J. Electrostatic Probe Apparatus for Measurements in the Near-Anode Region of Hall Thrusters[J]. Review of Scientific Instruments, 2004, 75(5): 1255-1260.
[13] Hara K, Sekerak M J, Boyd I D, et al. Perturbation Analysis of Ionization Oscillations in Hall Effect Thrusters[J]. Physics of Plasmas, 2014, 21(12).
[14] Mitrofanova O A, Murashko V M, Koryakin A I. New Generation of SPT-100[C]. Wiesbaden: Presented at the 32nd International Electric Propulsion Conference, 2011.
[15] Mitrofanova O A, Gnizdor R Y. Influence of SPT Magnetic Field on Life Time Characteristics of the Thruster[C]. Washington: 33rd International Electric Propulsion Conference, 2013.
[16] Zhang X, Wei L, Han L, et al. Measurement of Anode Thermal Power in Hall Thruster[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(3): 1-3.
[17] Huang W, Kamhawi H, Haag T. Plasma Oscillation Characterization of NASA’s HERMeS Hall Thruster via High Speed Imaging[R]. AIAA 2016-4829. 收稿日期:2018-03-11;修订日期:2018-05-30。通讯作者:张旭,博士,工程师,研究领域为空间电推进技术、低温等离子体测量及诊断技术等。E-mail:zx1987168@163.com(编辑:朱立影)
|