[1] Wilcox D. Turbulence Modeling for CFD[M]. La Canada: DCW Industries, 1992.
[2] Smith A M O, Gamberoni N. Transition, Pressure Gradient and Stability Theory[R]. U.S.A. Douglas Aircraft Co. Report No.ES 26388, 1956.
[3] Van Ingen J L. A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region[R]. Technische Hogeschool Delft, Vliegtuigbouwkunde, Rapport VTH-74, 1956.
[4] Krimmelbein N, Krumbein A. Automatic Transition Prediction for Three-Dimensional Configurations with Focus on Industrial Application[J]. Journal of Aircraft, 2011, 48(6): 1878-1887.
[5] Dhawan S J, Narasimha R. Some Properties of Boundary Layer Flow During the Transition from Laminar to Turbulent Motion[J]. Journal of Fluid Mechanics, 1958, 3(4): 418-436.
[6] Suzen Y B, Huang P G. Modeling of Flow Transition Using an Intermittency Transport Equation[J]. Journal of Fluids Engineering, 2000, 122(2): 273-284.
[7] Fu S, Wang L. RANS Modeling of High-Speed Aerodynamic Flow Transition with Consideration of Stability Theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.
[8] Menter F R, Langtry R B, Likki S R, et al. A Correlation-Based Transition Model Using Local Variables, Part I: Model Formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422.
[9] Langtry R B, Menter F R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[10] Volino R J, Simon T W. Boundary Layer Transition under High Free-Stream Turbulence and Strong Acceleration Conditions, Part 2: Turbulent Transport Results[J].Journal of Heat Transfer, 1997, 119(3): 427-432.
[11] Mayle R E, Schulz A. Path to Predicting Bypass Transition[J]. Journal of Turbomachinery, 1997, 119(3): 405-411.
[12] Walters D K, Cokljat D. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow[J]. Journal of Fluids Engineering, 2008, 130(12).
[13] Lardeau S, Fadai-Ghotbi A, Leschziner M. Modelling Bypass and Separation-Induced Transition by Reference to Pre-Transitional Fluctuation Energy[J]. Transition Modelling, 2009, 80: 72-76.
[14] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6): 1814-1822.
[15] 鞠胜军, 阎超, 叶志飞. γ-[Reθt]-[CF] 转捩模型在 Spalart-Allmaras 湍流模型中的推广及验证[J]. 航空学报, 2017, 38(4): 71-79.
[16] Xu J, Bai J, Fu Z, et al. Parallel Compatible Transition Closure Model for High-Speed Transitional Flow[J]. AIAA Journal, 2017, 55(9): 3040-3050.
[17] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7): 1804-1814.
[18] Xu J, Zhang Y, Bai J. One-Equation Turbulence Model Based on Extended Bradshaw Assumption[J]. AIAA Journal, 2015, 53(6): 1433-1442.
[19] Xu J L, Song Y F, Zhang Y, et al. A Turbulence Characteristic Length Scale for Compressible Flows[J]. Journal of Turbulence, 2016, 17(9): 900-911.
[20] 宋友富, 徐晶磊, 张扬, 等. 压缩拐角激波/边界层干扰的可压缩湍流模型研究[J]. 推进技术, 2017, 38(2): 281-288. (SONG You-fu, XU Jing-lei, ZHANG Yang, et al. Research of Compressible Turbulence Model in Shock Wave/Boundary-Layer Interaction Flow at a Compression Corner [J]. Journal of Propulsion Technology, 2017, 38(2): 281-288.)
[21] 陈大帅, 徐晶磊, 宋友富. 新型可压缩尺度在跨声速流动中的应用[J]. 气体物理, 2017, 2(3): 24-32.
[22] Schlatter P, ?rlü R. Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers[J]. Journal of Fluid Mechanics, 2010, 659: 116-126.
[23] She Z S, Chen X, Wei B B, et al. SED-Based Studies of Turbulence Models for Wall Flows[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12).
[24] Wu X, Moin P, Wallace J M, et al. Transitional–Turbulent Spots and Turbulent–Turbulent Spots in Boundary Layers[J]. Proceedings of the National Academy of Sciences, 2017, 114(27): 5292-5299.
[25] Xu J, Xu D, Zhang Y, et al. An Investigation of Transition Prediction Using Improved KDO RANS Model[C]. Sicily: 11th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, 2016: 42-47.
[26] Savill A M. Some Recent Progress in the Turbulence Modelling of Bypass Transition[M]. New York: Elsevier, 1993: 829-848.
[27] Chaput E. Application-Oriented Synthesis of Work Presented in Chapter II[C]. Wiesbaden: Notes on Numerical Fluid Mechanics, Vieweg Braunschweig, 1997, 58: 327-346.
[28] Sobieczky H. Test Wing for CFD and Applied Aerodynamics[R]. Test Case B-5 in AGARD FDP Advisory Report.AR 303, 1994.
[29] Kreplin H P, Vollmers H, Meier H U. Wall Shear Stress Measurements on an Inclined Prolate Spheroid in the DFVLR 3M× 3M Low Speed Wind Tunnel[R]. DFVLR-AVA, Report IB, 1985: 22-84.
[30] Jiang L, Choudhari M, Chang C L, et al. Numerical Simulations of Laminar-Turbulent Transition in Supersonic Boundary Layer[R]. AIAA 2006-3224.
[31] Chen F J, Malik M R, Beckwith I E. Boundary-Layer Transition on a Cone and Flat Plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6): 687-693.
[32] Warren E S, Hassan H A. Transition Closure Model for Predicting Transition Onset[J]. Journal of Aircraft, 1998, 35(5): 769-775. 收稿日期:2018-04-08;修订日期:2018-07-20。基金项目:国家自然科学基金(11472055)。作者简介:徐晶磊,博士,研究领域为大涡模拟,流固耦合。E-mail: xujl@buaa.edu.cn通讯作者:周禹,博士,高级工程师,研究领域为计算流体力学。E-mail: lab508lab@163.com(编辑:梅瑛)
|