[1] Vinton K R, Wright L M. Effect of Flow Acceleration on Mainstream to Coolant Flow Interaction for Round and Shaped Film Cooling Holes[R]. ASME GT-2017-63818.
[2] Prenter R, Hossain M A, Agricola L, et al. Experimental Characterization of Reverse-Oriented Film Cooling[R]. ASME GT-2017-64731.
[3] Hossain M A, Prenter R, Lundgreen R K, et al. Experimental and Numerical Investigation of Sweeping Jet Film Cooling[R]. ASME GT-2017-64479.
[4] 刘友宏, 任浩亮. 冲击距与气膜孔方位角对旋流气膜冷却性能影响[J]. 推进技术, 2016, 37(7): 1271-1279. (LIU You-hong, REN Hao-liang. Effects of Impingement Distance and Film Hole Angle of Orientation on Performance of Film Cooling with Swirling Coolant Flow[J]. Journal of Propulsion Technology, 2016, 37(7): 1271-1279.)
[5] Najafabadi H N, Karlsson M, Kinell M. On Film Cooling Performance of a Turbine Vane Pressure Side: The Effect of Showerhead and Hole Alignment[R]. ASME GT-2017-64746.
[6] Holgate N E, Ireland P T, Self K P. Nozzle Guide Vane Film Cooling Effectiveness for Radial Showerheads with Restricted Cooling Hole Surface Angles[R]. ASME GT- 2017-64645.
[7] Funazaki K. Studies on Wake-Affected Heat Transfer Around the Circular Leading Edge of Blunt Body[R]. ASME 94-GT-25.
[8] Funazaki K, Koyabu E, Yamawaki S. Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body[J]. Journal of Turbomachinery, 1997, 119(1): 292-301.
[9] Funazaki K, Koyabu E, Yamawaki S. Effect of Periodic Wake Passing on Film Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body[J]. Journal of Turbomachinery, 1998, 120(1):70-78.
[10] Mehendale A B, Han J C, Ou S, et al. Unsteady Wake Over a Linear Turbine Blade Cascade with Air and CO2 Film Injection, Part II: Effect on Film Effectiveness and Heat Transfer Distributions[R]. ASME 93-GT-134.
[11] 蒋雪辉, 赵晓路. 非定常尾迹对叶栅气膜冷却效率的影响[J]. 推进技术, 2004, 25(4):311-315. (JIANG Xue-hui, ZHAO Xiao-lu. Effect of Unsteady Wake on Linear Cascade Film Cooling Efficiency[J]. Journal of Propulsion Technology, 2004, 25(4): 311-315.)
[12] 蒋雪辉, 赵晓路. 非定常尾迹对气膜冷却影响的数值研究[J]. 工程热物理学报, 2005, 26(2): 322-324.
[13] 蒋雪辉, 赵晓路. 非定常尾迹对叶片头部气膜冷却的影响[J]. 航空动力学报, 2005, 20(4): 540-544.
[14] 李虹杨, 郑赟. 动静干涉对涡轮转子叶片气膜冷却的影响[J]. 北京航空航天大学学报, 2016, 42(1):139-146.
[15] 周鸿儒, 顾忠华, 韩万金, 等. 气冷涡轮级气热耦合非定常数值模拟[J]. 热能动力工程, 2011, 26(2):134-139.
[16] Han J C, Rallabandi A P. Turbine Blade Film Cooling Using PSP Technique[J]. Frontiers in Heat Pipes, 2010, 1(1): 227-237.(编辑:朱立影) 收稿日期:2018-08-27;修订日期:2018-10-23。作者简介:陈大为,博士生,研究领域为非定常条件下航空发动机高温部件的传热和冷却。E-mail: 1079673928@qq.com通讯作者:朱惠人,博士,教授,研究领域为航空发动机的传热和冷却。E-mail:zhuhr@nwpu.edu.cn
|