[1] 侯敏杰. 高空模拟试验技术[M]. 北京:航空工业出版社, 2014.
[2] 但志宏, 张松. PLC实现的FUZZY自适应PID控制器在高空模拟试验中的应用[J]. 自动化技术与应用, 2011, 30(1): 20-23.
[3] 朱美印, 裴希同, 张松, 等. 一种轮盘式特种调节阀流量特性的修正算法[J]. 燃气涡轮试验与研究, 2016, 29(5): 40-45.
[4] 裴希同, 朱美印, 张松, 等. 一种特种阀流量特性计算的经验公式迭代方法[J]. 燃气涡轮试验与研究, 2016, 29(5): 35-39.
[5] 王曦, 朱美印, 张松, 等. 国外高空模拟试车台控制系统技术发展[J]. 燃气涡轮试验与研究, 2017, 30(6): 49-55.
[6] 朱美印, 张松, 但志宏, 等. 高空台飞行环境模拟腔μ综合控制设计[J]. 航空动力学报, 2017, 32(12): 3039-3048.
[7] 张松, 朱美印, 但志宏, 等. 飞行环境模拟腔积分型μ综合控制[J]. 推进技术, 2018, 39(3): 660-666. (ZHANG Song, ZHU Mei-yin, DAN Zhi-hong, et al. The Integral Type μ Synthesis Control of Flight Environment Simulation Volume[J]. Journal of Propulsion Technology, 2018, 39(3): 660-666.)
[8] Davis M, Montgomery P. A Flight Simulation Vision for Aero-Propulsion Altitude Ground Test Facilities[J]. Journal of Engineering for Gas Turbines & Power, 2005, 127(1): 21-31.
[9] Montgomery P A, Burdette R, Wilhite L, et al. Modernization of a Turbine Engine Test Facility Utilizing a Real-Time Facility Model and Simulation[R]. ASME GT-2001-0573.
[10] Davis M, Hale A, Beale D. An Argument of Enhancement of the Current Inlet Distortion Ground Test Practice for Aircraft Gas Turbine Engines[J]. Journal of Turbomachinery, 2002, 124(2): 235-241.
[11] Peter M Pachlhofer, Joseph W, Dennis J Dicki. Advance in Engine Test Capabilities at the NASA Glenn Research Center’s Propulsion System Laboratory[R]. ASME GT-2006-90181.
[12] Montgomery P, Burdette R, Klepper J, et al. Evolution of a Turbine Engine Test Facility to Meet the Test Needs of Future Aircraft Systems[R]. ASME GT-2002-30605.
[13] K?cke S. Simulation eines H?henprüfstands zur Untersuchung der Verdichter-Pumpverhütungs-Regelung[D]. Stuttgart: University of Stuttgart, 2009.
[14] Borairi M, Every D V. Design and Commissioning of a Multivariable Control System for a Gas Turbine Engine Test Facility[R]. AIAA 2006-3151.
[15] Shamma J. S. Analysis and Design of Gain Schedule Control Systems[D]. Massachusetts: Massachusetts Institute of Technology, 1988.
[16] Shamma J S, Cloutier J R. Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations[J]. Journal of Guidance, Control and Dynamics, 1993, 16(2): 256–263.
[17] Ganguli S, Marcos A, Balas G. Reconfigurable LPV Control Design for Boeing 747-100/200 Longitudinal Axis[C]. Piscataway: Proceedings of the 2002 American Control Conference, 2002.
[18] Fialho I, Balas G J, Packard A K, et al. Gain-Scheduled Lateral Control of the F-14 Aircraft During Powered Approach Landing[J]. Journal of Guidance, Control and Dynamics, 2000, 23(3): 450–458.
[19] Balas G J. Linear, Parameter-Varying Control and Its Application to a Turbofan Engine[J]. International Journal of Robust and Nonlinear Control, 2002, 12(9): 763–796.
[20] Fialho I, Balas G J. Road Adaptive Active Suspension Design Using Linear Parameter Varying Gain-Scheduling[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1): 43–54.
[21] 虞忠伟, 陈辉堂. 机器人多胞变增益输出反馈[H∞]控制 [J]. 控制理论与应用, 2003, 20(6): 925–932
[22] Zhu M, Wang X. An Integral Type μ Synthesis Method for Temperature and Pressure Control of Flight Environment Simulation Volume[R]. ASME GT-2017-63529.
[23] 马卡洛夫 A H. 节流装置计算[M]. 北京:冶金工业出版社, 1957.
[24] 朱美印, 张松, 但志宏, 等. 一种大口径蝶阀流量特性的坐标定位回归算法[J]. 燃气涡轮试验与研究, 2017, 30(4): 39-44.(编辑:朱立影) 收稿日期:2018-06-06;修订日期:2018-08-03。通讯作者:朱美印,博士生,研究领域为航空发动机控制、高空台数字仿真平台研究以及鲁棒控制等。 E-mail: mecalzmy@163.com
|