[1] Cecere D, Giacomazzi E, Ingenito A. A Review on Hydrogen Industrial Aerospace Applications[J]. International Journal of Hydrogen Energy, 2014, 39(20): 10731-10747.
[2] 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308.
[3] 宋伟荣, 汪娟娟. 低温流量测量[J]. 低温与超导, 2001, 29(2): 21-25.
[4] 李建军. 涡轮流量计在火箭发动机试验中的应用[J]. 火箭推进, 2007, 33(3): 52-55.
[5] 周磊, 耿卫国, 朱子环, 等. 低温涡街流场特性数值仿真研究[J]. 低温工程, 2010, (6): 37-40.
[6] Jin T, Tian H, Gao X, et al. Simulation and Performance Analysis of the Perforated Plate Flowmeter for Liquid Hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3890-3898.
[7] 田红, 高旭, 汤珂, 等. 结构参数对多孔板低温流量计性能影响分析[J]. 低温工程, 2015, (6): 43-48.
[8] Liu H, Tian H, Chen H, et al. Numerical Study on Performance of Perforated Plate Applied to Cryogenic Fluid Flowmeter[J]. Journal of Zhejiang University-Science A, 2016, 17(3): 230-239.
[9] ASMEMFC. Wet Gas Flowmetering Guideline[R]. ASME MFC-19G-2008.
[10] He D H, Bai B F. Gas-Liquid Two Phase Flow with High GVF Through a Horizontal V-Cone Throttle Device[J]. International Journal of Multiphase Flow, 2017, 91: 51–62.
[11] Steven R N. Horizontally Installed Cone Differential Pressure Meter Wet Gas Flow Performance[J]. Flow Measurement and Instrumentation, 2009, 20(4-5): 152–167.
[12] He D H, Bai B F, Xu Y, et al. A New Model for the V-Cone Meter in Low Pressure Wet Gas Metering[J]. Measurement Science and Technology, 2012, 23(12).
[13] Tan C, Wu H, Dong F. Mass Flow Rate Measurement of Oil-Water Two-Phase Flow by a Long-Waist Cone Meter[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(10): 2795–2804.
[14] McCrometer Inc.. Advanced Differential Pressure Flowmeter Technology[M]. Hemet: McCrometer Inc., 2008.
[15] Stephen A I. V-Cone: an Alternative to Orifice Meter in Wet Gas Applications[C]. Haugesund: the 17th North Sea Flow Measurement Workshop, 1999.
[16] Hollingshead C L. Discharge Coefficient Performance of Venturi Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at Small Reynolds Numbers[D]. Utah: Utah State University, 2011.
[17] Stephen A I. Permanent Pressure Loss Comparison Among Various Flowmeter Technologies[M]. Hemet: McCrometer Inc., 2010.
[18] He D H, Bai B F. Two-Phase Mass Flow Coefficient of V-Cone Throttle Device[J]. Experimental Thermal and Fluid Science, 2014, 57: 77–85.
[19] 徐英, 于中伟, 张涛, 等. V形内锥流量计关键参数对流出系数的影响[J]. 机械工程学报, 2008, 44(12): 105-111.
[20] 侯克峰, 张虎, 占成, 等. 取压孔位置及锥角变化对V锥流量计的影响分析[J]. 计量技术, 2012, 2: 3-5.
[21] Tan C, Wu H, Wei C, et al. Experimental and Numerical Design of a Long-Waist Cone Flow Meter[J]. Sensors and Actuators A: Physical, 2013, 199(17): 9-17.
[22] Singh R K, Singh S N, Seshadri V. CFD Prediction of the Effects of the Upstream Elbow Fittings on the Performance of Cone Flowmeters[J]. Flow Measurement and Instrumentation, 2010, 21(2): 88–97.
[23] Singh R K, Singh S N, Seshadri V. Study on the Effect of Vertex Angle and Upstream Swirl on the Performance Characteristics of Cone Flowmeter Using CFD[J]. Flow Measurement and Instrumentation, 2009, 20(2): 69–74.
[24] Peters R, Steven R N, Caldwell S, et al. Testing the Wafer V-Cone Flowmeters in Accordance with API 5. 7-Testing Protocol for Differential Pressure Flow Measurement Devices in the CEESI Colorado Test Facility[J]. Flow Measurement and Instrumentation, 2006, 17(4): 247–254.
[25] Hodges C, Britton C, Johansen W. Cone Meter Calibration Problems[C]. Norway: The 27th International North Sea Flow Measurement Workshop, 2009.
[26] Brennen C E. Cavitation and Bubble Dynamics[M]. UK: Oxford University Press, 2013.
[27] Numachi F, Yamabe M, Oba R. Cavitation Effects on the Discharge Coefficient of the Sharp-Edged Orifice Plate[J]. Journal of Fluids Engineering, 1960, 82(1): 1–6.
[28] Numachi F, Kobayashi R, Kamiyama S. Effect of Cavitation on the Accuracy of Herschel-Type Venturi Tubes[J]. Journal of Fluids Engineering, 1962, 84(3): 351–360.
[29] Ramamurthi K, Nandakumar K. Characteristics of Flow Through Small Sharp Edged Cylindrical Orifices[J]. Flow Measurement and Instrumentation, 1999, 10(3): 133–143.
[30] Ebrahimi B, He G, Tang Y, et al. Characterization of High-Pressure Cavitating Flow Through a Thick Orifice Plate in a Pipe of Constant Cross Section[J]. International Journal of Thermal Sciences, 2017, 114: 229-240.
[31] Ashrafizadeh S M, Ghassemi H. Experimental and Numerical Investigation on the Performance of Small-Sized Cavitating Venturis[J]. Flow Measurement and Instrumentation, 2015, 42: 6–15.
[32] Tomov P, Khelladi S, Ravelet F, et al. Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle[J]. Experimental Thermal and Fluid Science, 2016, 70: 85–95.
[33] Long X, Zhang J, Wang J, et al. Experimental Investigation of the Global Cavitation Dynamic Behavior in a Venturi Tube with Special Emphasis on the Cavity Length Variation[J]. International Journal of Multiphase Flow, 2017, 89: 290–298.
[34] 姜映福, 刘中祥, 褚宝鑫. 低温流体汽蚀的数值计算及可视化实验研究[J]. 推进技术, 2017, 38(12): 2771-2777. (JIANG Ying-fu, LIU Zhong-xiang, CHU Bao-xin. Numerical Simulation and Visualized Experimental Study on Cavitating of Cryogenic Fluids[J]. Journal of Propulsion Technology, 2017, 38(12): 2771-2777.)
[35] Brinkhorst S, Lavante E, Wendt G. Numerical Investigation of Cavitating Herschel Venturi-Tubes Applied to Liquid Flow Metering[J]. Flow Measurement and Instrumentation, 2015, 43: 23–33.
[36] Sun Z Y, Li G X, Chen C, et al. Numerical Investigation on Effects of Nozzle’s Geometric Parameters on the Flow and the Cavitation Characteristics within Injector’s Nozzle for a High-Pressure Common-Rail DI Diesel Engine[J]. Energy Conversion & Management, 2015, 89(9): 843–861.
[37] Rodio M G, Congedo P M. Robust Analysis of Cavitating Flows in the Venturi Tube[J]. European Journal of Mechanics-B/Fluids, 2014, 44(2): 88–99.
[38] Yuan W, Sauer J, Schnerr G H. Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles[J]. Mécanique and Industries, 2001, 2(5): 383–394.
[39] Zhu J K, Chen Y, Zhao D F, et al. Extension of the Schnerr-Sauer Model for Cryogenic Cavitation[J]. European Journal of Mechanics, 2015, 52: 1-10.
[40] 贺登辉. 内置V锥管内气液两相流动特性及其在湿气双参数测量中的应用[D]. 西安:西安交通大学, 2015.
[41] Hord J, Anderson L M, Hall W J. Cavitation in Liquid Cryogens III-Ogives[R]. NASA-CR-2156, 1973.
[42] Huang S F, Ma T Y, Wang D, et al. Study on Discharge Coefficient of Perforated Orifices as a New Kind of Flowmeter[J]. Experimental Thermal and Fluid Science, 2013, 46: 74–83.
[43] Idelchik I E. Hand Book of Hydraulic Resistance (4th Edition)[M]. USA: Begell House, 2008. 收稿日期:2018-04-12;修订日期:2018-05-12。基金项目:国家自然科学基金(51709227;11605136)。通讯作者:贺登辉,博士,讲师,研究领域为多相流流动及测量新方法。E-mail: hedhui@foxmail.com(编辑:朱立影)
|