[1] Panaras A G. Review of the Physics of Swept-Shock/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 1996, 32(2–3): 173-244.
[2] He-xia Huang, Hui-jun Tan, Shu Sun, et al. Evolution of Supersonic Corner Vortex in a Hypersonic Inlet/Isolator Model[J]. Physics of Fluids, 2016, 28(12).
[3] McCabe A. The Three-Dimensional Interaction of a Shock Wave with a Turbulent Boundary Layer[J]. Aeronautical Quarterly, 1966, 17(3): 231-252.
[4] Korkegi R H. A Simple Correlation for Incipient-Turbulent Boundary-Layer Separation Due to a Skewed Shock Wave[J]. AIAA Journal, 1973, 11(11): 1578-1579.
[5] Korkegi R H. Comparison of Shock-Induced Two and Three Dimensional Incipient Turbulent Seperation[J]. AIAA Journal, 1975, 13(4): 534-535.
[6] Oskam B, Bogdonoff S M, Vas I E. Study of Three-Dimensional Flow Fields Generated by the Interaction of a Skewed Shock Wave with a Turbulent Boundary Layer[R]. AFFDL TR-75-21.
[7] 窦华书, 邓学蓥. 三维激波/湍流边界层干扰产生的起始分离的预测[J]. 空气动力学学报, 1992, 10(1):45-52.
[8] 邓学蓥, 廖锦华. 尖楔和半锥引起的激波/边界层干扰中相关特性研究[J]. 北京航空航天大学学报, 1993, 1(1): 1-5.
[9] Alvi F S, Settles G S. Physical Model of the Swept Shock Wave/Boundary-Layer Interaction Flowfield[J]. AIAA Journal, 1992, 30(9): 2252-2258.
[10] Alvi F S, Settles G S. Structure of Swept Shock Wave/Boundary-Layer Interactions Using Conical Shadowgraphy[C]. Washington DC: 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1990.
[11] Knight D D, Badekast D, Horstmant C C, et al. Quasiconical Flowfield Structure of the Three-Dimensional Single Fin Interaction[J]. AIAA Journal, 1992, 30(12): 2809-2816.
[12] Rodi P E, Dolling D S. Behavior of Pressure and Heat Transfer in Sharp Fin-Induced Turbulent Interactions[J]. AIAA Journal, 1995, 33(11): 2013-2019.
[13] Fang J, Yao Y, Zheltovodov A A, et al. Investigation of Three-Dimensional Shock Wave/Turbulent-Boundary-Layer Interaction Initiated by a Single Fin[J]. AIAA Journal, 2016, 55(22): 1-12.
[14] Token K H. Heat Transfer Due to Shock Wave/Turbulent Boundary Layer Interactions on High Speed Weapon Systems[R]. AFFDL TR-74-77.
[15] Kubota H, Stollery J. An Experimental Study of the Interaction Between a Glancing Shock Wave and a Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 1982, 116(1): 431-458.
[16] Dolling D S, Bogdonoff S M. Upstream Influence in Sharp Fin-Induced Shock Wave Turbulent Boundary-Layer Interaction[J]. AIAA Journal, 1983, 21(1): 143-145.
[17] Zheltovodov A A. Regimes and Properties of Three-Dimensional Separation Flows Initiated by Skewed Compression Shocks[J]. Journal of Applied Mechanics and Technical Physics, 1982, 23(3): 413-418.
[18] Degrez G, Ginoux J. Surface Phenomena in a Three-Dimensional Skewed Shock Wave/Laminar Boundary-Layer Interaction[J]. AIAA Journal, 1984, 22(12): 1764-1769.
[19] Dolling D S, Mcclure W B. Flowfield Scaling in Sharp Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction[J]. AIAA Journal, 1985, 23(2): 201-206.
[20] Dolling D S. Upstream Influence in Conically Symmetric Flow[J]. AIAA Journal, 1985, 23(6): 967-969.
[21] Settles G S, Lu F K. Conical Similarity of Shock/Boundary-Layer Interactions Generated by Swept and Unswept Fins[J]. AIAA Journal, 1985, 23(7): 1021-1027.
[22] Knight D D, Horstman C, Bogdonoff S, et al. Structure of Supersonic Turbulent Flow Past a Sharp Fin[J]. AIAA Journal, 1987, 25(10): 1331-1337.
[23] Hsu J C, Settles G S. Holographic Flowfield Density Measurements in Swept Shock Wave/Boundary-Layer Interactions[C]. Washington DC: 30th Aerospace Sciences Meeting and Exhibit, 1992.
[24] Knight D D, Badekast D, Horstmant C C, et al. Quasiconical Flowfield Structure of the Three-Dimensional Single Fin Interaction[J]. AIAA Journal, 1992, 30(12): 2809-2816.
[25] 王宇, 王世芬. 马赫数对后掠激波和湍流边界层干扰特性的影响[J]. 空气动力学学报, 1994, 12(3):313-319.
[26] 邓学蓥, 廖锦华. 锥形干扰中的起始分离研究[J]. 空气动力学学报, 1997, 15(1): 87-93.
[27] 王世芬, 王宇, 刘鹏. 高超音速后掠激波与边界层干扰流场特性[J]. 航空学报, 1993, 14(9): 449-454.
[28] Garrison T J, Settles G S. Flowfield Visualization of Crossing Shock-Wave/Boundary-Layer Interactions[C].Washington DC: 30th Aerospace Sciences Meeting and Exhibit, 1992.
[29] Garrison T J, Settles G S, Narayanswami N, et al. Structure of Crossing-Shock-Wave/Turbulent-Boundary-Layer Interactions[J]. AIAA Journal, 1993, 31(31): 2204-2211.
[30] Hui-jun Tan, Shu Sun, He-xia Huang. Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex Background Waves[J]. Experiments in Fluids, 2012, 53(6): 1647-1661.
[31] Reinartz B U, Herrmann C D, Ballmann J, et al. Aerodynamic Performance Analysis of a Hypersonic Inlet Isolator Using Computation and Experiment[J]. Journal of Propulsion and Power, 2003, 19(5): 868-875.
[32] Schmitz D, Bissinger N. Design and Testing of 2-D Fixed-Geometry Hypersonic Intakes[C]. Washington DC: 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 1998. 收稿日期:2018-05-31;修订日期:2018-07-27。基金项目:国家自然科学基金重点项目(11532007);国家自然科学基金(11502111)。作者简介:盛发家,硕士生,研究领域为内流空气动力学。E-mail: sfj636@163.com通讯作者:谭慧俊,博士,研究领域为内流空气动力学。E-mail: tanhuijun@nuaa.edu.cn(编辑:史亚红)
|