[1] Anderson J D. Hypersonic and High Temperature Gas Dynamics [M]. Reston: AIAA Education Series, 2006.
[2] 卞荫贵, 徐立功. 气动热力学[M]. 合肥:中国科学大学出版社, 1997.
[3] 樊菁. 高超声速高温气体效应判据[J]. 力学学报, 2010, 42(4): 591-596.
[4] 黄志澄. 空天飞机的真实气体效应[J]. 气动实验与测量控制, 1994, 8(2): 1-9.
[5] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6): 683-694.
[6] Griffith B J, Maus J R, Best J T. Explanation of the Hypersonic Longitudinal Stability Problem-Lessons Learned In: Shuttle Performance: Lessons Learned[R]. NASA CP 2283.
[7] Weilmuenster K J, Gnoffo P A, and Greene F A. Navier-Stokes Simulations of Shuttle Orbiter Aerodynamic Characteristics with Emphasis on Pitch Trim and Body Flap [R]. AIAA 93-2814.
[8] Bertin J J. Hypersonic Aerothermodynamics[J]. International Journal of Aeronatical and Space Sciences, 1994, 14(1): 1-10.
[9] Scott C D. Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic Flows-with Applications. in: Advances in Hypersonics: Modeling Hypersonic Flows [R]. Boston: Birkhaeuser, 1992.
[10] Scott C D. A Review of Nonequilibrium Radiation in AOTV Flight Regimes [R]. AIAA 84-0306.
[11] 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学报, 2001, 19(2): 197-202.
[12] 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙:国防科技大学, 2004.
[13] John R M. Simulation of Real-Gas Effects on Pressure Distribution for Aeroassist Flight Experiment Vehicle and Comparison with Prediction[R]. NASA TND-3157.
[14] Whitmore S A. Real-Gas Extensions to Tangent-Wedge and Tangent-Cone Analysis Methods[J]. AIAA Journal, 2007, 45(8): 2024-2032.
[15] Mortensen C H, Zhong X L. Real-Gas and Surface-Ablation Effects on Hypersonic Boundary-Layer Instability over a Blunt Cone [J]. AIAA Journal, 2016, 54(3): 976-994.
[16] Willoh R G. Mathematic Analysis of Supersonic Inlet Dynamics [R]. NASA TND-4969.
[17] Mahoney J J. Inlets for Supersonic Missiles[M]. USA:AIAA Education Series, 1990.
[18] Weir L J, et al. A New Concept for Supersonic Axisymmetric Inlets [R]. AIAA 2002-3775.
[19] William H H, David T P. Hypersonic Airbreathing Propulsion [M]. USA: AIAA Education Series, 1994.
[20] 李永洲, 张堃元, 钟启涛. 型面设计马赫数对马赫数分布可控高超声速内收缩进气道的影响[J]. 南京航空航天大学学报, 2014, 46(2): 239-245.
[21] 李大进, 高雄, 朱守梅. 弯曲激波压缩曲面的二元高超声速进气道研究[J]. 推进技术, 2013, 34(11): 1441-1447. (LI Da-jin, GAO Xiong, ZHU Shou-mei. Study of Hypersonic 2D-Inlet with Leading Curved-Shock Wave Compression Ramp[J]. Journal of Propulsion Technology, 2013, 34(11): 1441-1447. )
[22] 袁化成, 郭荣伟. 矩形截面高超声速进气道气动设计及实验验证[J]. 南京航空航天大学学报, 2009, 41(4): 423-428.
[23] H?berle J, and Gülhan A. Internal Flow Field Investigation of a Hypersonic Inlet at Mach 6 with Bleed[J]. Journal of Propulsion and Power, 2007, 23(5): 1007-1017.
[24] 栗莉. 真实气体效应对高超声速进气道流场结构影响的研究 [D]. 哈尔滨:哈尔滨工程大学, 2013.
[25] 苏纬仪, 张堃元, 金志光. 高超声速进气道附面层分离无源被动控制[J]. 推进技术, 2011, 32(4): 455-460. (SU Wei-yi, ZHANG Kun-Yuan, JIN Zhi-guang. Adaptive Passive Control on Hypersonic Inlet Boundary Layer Separation[J]. Journal of Propulsion Technology, 2011, 32(4): 455-460.)
[26] 郑日升, 李伟鹏, 常军涛, 等. “X”布局高超声速倒置进气道激波与附面层干扰控制研究[J]. 推进技术, 2014, 35(9): 1153-1161. (ZHENG Ri-sheng, LI Wei-peng, CHANG Jun-tao, et al. Suppression of Interaction Between Shock Wave and Boundary Layer for "X" Hypersonic Inverted Inlet [J]. Journal of Propulsion Technology, 2014, 35(9): 1153-1161.)
[27] 徐骁, 岳连捷, 卢洪波, 等. 高超声速进气道快速破膜开启的流动特性[J]. 航空学报, 2015, 36(6): 1795-1804.
[28] Yue L J, Lu H B, Xu X, et al. Flow Characteristics and Aerodynamic Heating of Bleed Slot in High Enthalpy Flow[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(4): 741-752.
[29] Hannemann K, Schramm J M, Karl S, et al. Cylinder Shock Layer Density Profiles Measured in High Enthalpy Flows in HEG[R]. AIAA 2002-2913.(编辑:史亚红) 收稿日期:2018-04-16;修订日期:2018-06-14。基金项目:国家自然科学基金(11472279;11672309)。作者简介:张启帆,博士,助理研究员,研究领域为内流空气动力学。E-mail: zhangqifan@imech.ac.cn通讯作者:岳连捷,博士,研究员,研究领域为超燃冲压发动机流动。E-mail: yuelj@imech.ac.cn真实气体效应对Ma10级进气道流动的影响
|