[1] Gazi A, Vourliotakis G, Skevis G, et al. Assessment of Chemical Markers for Heat-Release Rate Correlations in Laminar Premixed Flames[J]. Combustion Science and Technology, 2013, 185(10): 1482-1508.
[2] Nikolaou Z M, Swaminathan N. Heat Release Rate Markers for Premixed Combustion[J]. Combustion and Flame, 2014, 161(12): 3073-3084.
[3] Hu G, Zhang S, Li Q F, et al. Experimental Investigation on the Effects of Hydrogen Addition on Thermal Characteristics of Methane/Air Premixed Flames[J]. Fuel, 2014, 115(1): 232-240.
[4] Lv L, Tan J, Hu Y. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames [J]. International Journal of Aerospace Engineering, 2016, 2016(1): 1-10.
[5] 范周琴, 刘卫东, 林志勇, 等. 支板喷射超声速燃烧火焰结构实验 [J]. 推进技术, 2012, 33(6): 923-927. (FAN Zhou-qin, LIU Wei-dong, LIN Zhi-yong, et al. Experimental Investigation on Supersonic Combustion Flame Structure with Strut Injector[J]. Journal of Propulsion Technology, 2012, 33(6): 923-927.)
[6] Kojima J, Ikeda Y, Nakajima T. Basic Aspects of OH(A), CH(A), and C2(D) Chemiluminescence in the Reaction Zone of Laminar Methane–Air Premixed Flames [J]. Combustion and Flame, 2005, 140(1-2): 34-45.
[7] Tripathi M M, Krishnan S R, Srinivasan K K, et al. Chemiluminescence-Based Multivariate Sensing of Local Equivalence Ratios in Premixed Atmospheric Methane–Air Flames [J]. Fuel, 2012, 93(1): 684-691.
[8] Hardalupas Y, Orain M. Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame [J]. Combustion and Flame, 2004, 139(3): 188-207.
[9] Mulla I A, Dowlut A, Hussain T, et al. Heat Release Rate Estimation in Laminar Premixed Flames Using Laser-Induced Fluorescence of CH2O and H-Atom[J]. Combustion and Flame, 2016, 165(1): 373-383.
[10] Floyd J, Geipel P, Kempf A M. Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D Measurements and Phantom Studies of a Turbulent Opposed Jet Flame [J]. Combustion and Flame, 2011, 158(2): 376-391.
[11] Kathrotia T, Riedel U, Seipel A, et al. Experimental and Numerical Study of Chemiluminescent Species in Low-Pressure Flames [J]. Applied Physics B, 2012, 107(3): 571-584.
[12] Samaniego, Egolfopoulos, Bowman. CO2 Chemiluminescence in Premixed Flames [J]. Combustion Science and Technology, 1995, 109(1-6): 183-203.
[13] Samaniego, Mantel. Fundamental Mechanisms in Premixed Turbulent Flame Propagation via Flame–Vortex Interactions, Part I: Experiment[J]. Combustion and Flame, 1999, 118(4): 557-582.
[14] Kathrotia T, Riedel U, Warnatz J. A Numerical Study on the Relation of OH, CH, and C2 Chemiluminescence and Heat Release in Premixed Methane Flames [C]. Vienna: Proceedings of the European Combustion Meeting, 2009.
[15] Haber L C, Vandsburger U, Saunders W R. An Experimental Examination of the Relationship Between Chemiluminescent Light Emissions and Heat-Release Rate under Non-Adiabatic Conditions[C]. Braunschweig: Proceedings of the RTP AVT Symposium, 2000.
[16] Lauer M. On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames with Mixture Gradients[J]. Journal of Engineering for Gas Turbine and Power, 2010, 132(1): 1-8.
[17] Farhat S A, Ng W B, Zhang Y. Chemiluminescent Emission Measurement of a Diffusion Flame Jet in a Loudspeaker Induced Standing Wave [J]. Fuel, 2005, 84(14-15): 1760-1767.
[18] Hossain A, Nakamura Y. A Numerical Study on the Ability to Predict the Heat Release Rate Using CH Chemiluminescence in Non-Sooting Counterflow Diffusion Flames[J]. Combustion and Flame, 2014, 161(1): 162-172.
[19] Zhou B, Brackmann C, Li Q, et al. Distributed Reactions in Highly Turbulent Premixed Methane/Air Flames [J]. Combustion and Flame, 2015, 162(7): 2937-2953.
[20] Powell O A, Papas P, Dreyer C B. Flame Structure Measurements of NO in Premixed Hydrogen–Nitrous Oxide Flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1053-1062.
[21] Ferrières de S, El Bakali A, Gasnot L, et al. Kinetic Effect of Hydrogen Addition on Natural Gas Premixed Flames [J]. Fuel, 2013, 106(1): 88-97.
[22] Laurence S J, Lieber D, Schramm J M, et al. Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor, Part I: Shock-Tunnel Experiments[J]. Combustion and Flame, 2015, 162(4): 921-931.
[23] Kaskan W E. The Dependence of Flame Temperature on Mass Burning Velocity[C]. United States: Proceedings of the Symposium(International) on Combustion, 1957.
[24] 颜庆津. 数值分析(第三版) [M]. 北京:北京航空航天大学出版社, 2011.
[25] 胡悦, 谭建国, 吕良. 甲烷-空气预混火焰中OH标识放热率的数值模拟研究 [J]. 推进技术, 2018, 39(4): 835-842. (HU Yue, TAN Jian-guo, LYU Liang, Numerical Evaluation of the Heat Release Rate Measurement Using OH Chemiluminescence in Premixed Methane-Air Flames[J]. Journal of Propulsion Technology, 2018, 39(4): 835-842.)(编辑:梅瑛) 收稿日期:2018-05-16;修订日期:2018-07-04。基金项目:国家自然科学基金(91441121;11272351)。通讯作者:胡悦,硕士生,研究领域为基于自发辐射的燃烧诊断。E-mail: huyuebuaa@163.com
|