[1] Luca L T D. Burning of Aluminized Solid Rocket Propellants: from Micrometric to Nanometric Fuel Size[C]. Xi’an: International Autumn Seminar on Propellants, Explosives and Pyrotechnics, 2007.
[2] Maggi F, Bandera A, De Luca L T, et al. Agglomeration in Solid Rocket Propellants: Novel Experimental and Modeling Methods[J]. Progress in Propulsion Physics, 2012, (2): 81-98.
[3] Najjar F, Haselbacher A, Balachandar S, et al. Simulations of Droplet Nozzle Impact and Slag Accumulation in the RSRM[R]. AIAA 2006-4588.
[4] 刘冰, 方丁酉, 夏智勋, 等. 考虑气体-颗粒两相流效应的火箭发动机喷管参数优化设计[J]. 推进技术, 2013, 34(1): 8-14. (LIU Bing, FANG Ding-you, XIA Zhi-xun, et al. Optimal Design of Rocket Nozzle Parameters with Consideration of Gas-Particle Two-Phase Flow Effect[J]. Journal of Propulsion Technology, 2013, 34(1): 8-14.)
[5] Coats D, Dunn S, French J. Improvements to the Solid Performance Program (SPP)[R]. AIAA 2003-4504.
[6] Daniel E. Eulerian Approach for Unsteady Two-Phase Solid Rocket Flows with Aluminum Particles[J]. Journal of Propulsion and Power, 2015, 16(2): 309-317.
[7] Dupays J, Wey S, Fabignon Y. Steady and Unsteady Reactive Two-Phase Computations in Solid Rocket Motors with Eulerian and Lagrangian Approaches[R]. AIAA 2001-3871.
[8] Andrew M, Eaton A, Mark E, et al. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor[R]. AIAA 2001-3584.
[9] Sabnis J, Jong F D. Calculation of the Two-Phase Flow in an Evaporating Spray Using an Eulerian-Lagrangian Analysis[R]. AIAA 90-0447.
[10] Madabhushi R K, Sabnis J S, Jong F J D, et al. Calculation of the Two-Phase Aft-Dome Flowfield in Solid Rocket Motors[J]. Journal of Propulsion and Power, 2015, 7(2): 178-184.
[11] Sabnis J, Jong F D, Gibeling H. A Two-Phase Restricted Equilibrium Model for Combustion of Metalized Solid Propellants[J]. AIAA 92-3509.
[12] Ciucci A, Iaccarino G, Amato M. Numerical Investigation of 3D Two-Phase Turbulent Flows in Solid Rocket Motors[R]. AIAA 98-3509.
[13] Lupoglazoff N, Vuillot F, Dupays J, et al. Numerical Simulations of the Unsteady Flow Inside Segmented Solid-Propellant Motors with Burning Aluminum Particles[R]. AIAA 2002-0718.
[14] Thomas B B, Wu-Zhen Ren, Vigor Yang. Combustion of Aluminized Solid Propellants[J]. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Progress in Astronautics and Aeronautics, 2000, 2(18):663-687.
[15] Liaw P, Chen Y S, Shang H M, et al. Particulate Multi-Phase Flowfield Calculation with Combustion/Breakup Models for Solid Rocket Motor[R]. AIAA 94-2780.
[16] 许团委, 田维平, 王建儒. 中、小过载下战术发动机内流场数值模拟[J]. 推进技术, 2015, 36(4): 532-539. (XU Tuan-wei, TIAN Wei-ping, WANG Jian-ru.Numerical Simulation of Flow Field of Tacticle SRM with Low and Medium Acceleration[J]. Journal of Propulsion Technology, 2015, 36(4): 532-539.)
[17] 于勇, 张夏, 陈维. 用双流体模型模拟超声速气固两相流动[J]. 航空动力学报, 2010, 25(4): 800-807.
[18] Laubacher B. Internal Flow Analysis of Large L/D Solid Rocket Motors[R]. AIAA 2000-3803.
[19] Balachandar S, Maxey M R. Methods for Evaluating Fluid Velocities in Spectral Simulations of Turbulence[J]. Journal of Computational Physics, 1989, 83(1):96-125.
[20] Jim Ferry. A Fast Eulerian Method for Disperse Two-Phase Flow[J]. International Journal of Multiphase Flow, 2001, 27(7): 1199-1226.
[21] Ferry J, Balachandar S. Equilibrium Expansion for the Eulerian Velocity of Small Particles[J]. Powder Technology, 2002, 125(2–3): 131-139.
[22] Liu Z, Li S, Liu M, et al. Experimental Investigation of the Combustion Products in an Aluminised Solid Propellant[J]. Acta Astronautica, 2017, 133(1): 136-144.
[23] Salita, M. Quench Bomb Investigation of Al2O3 Formation from Solid Rocket Propellants, Part 2: Analysis of Data[C]. Huntsville: 25th JANNAF Combution Meeting, 1988.
[24] Najjar F M, Ferry J P, Haselbacher A, et al. Simulations of Solid-Propellant Rockets: Effects of Aluminum Droplet Size Distribution[J]. Journal of Spacecraft and Rockets, 2012, 43(6):1258-1270.
[25] Ao W, Liu P, Yang W. Agglomerates, Smoke Oxide Particles, and Carbon Inclusions in Condensed Combustion Products of an Aluminized GAP-Based Propellant[J]. Acta Astronautica, 2016, 129(1): 147-153.
[26] Jackson T L, Najjar F, Buckmaster J. An Aluminum Injection Model Based on Random Packs for Solid Propellant Rocket Motor Simulations[R]. AIAA 2004-4042.
[27] Jackson T L, Buckmaster J, Najjar F. New Aluminum Agglomeration Models and Their Use in Solid-Propellant-Rocket Simulations[J]. Journal of Propulsion and Power, 2005, 21(5): 925-936.
[28] 方丁酉. 两相流动力学[M]. 长沙:国防科学技术大学出版社, 1988.
[29] Spalart P, Allmaras S. A One-Equation Turbulence Model for Aerodynamic Flows[J]. La Recherche Aérospatiale, 1992, 439(1): 5-21.
[30] Balachandar S. Large-Scale Multiphase Large Eddy Simulation of Flow in Solid Rocket Motors[R]. AIAA 2003-3700.
[31] Widenner J F, Beckstead M W. Aluminum Combustion Modeling in Solid Propellant Combustion Products[R]. AIAA 98-3824.
[32] CAVENY L H. Breakup of Al/Al2O3 Agglomerates in Accelerating Flowfields[J]. AIAA Journal, 1979, 17(12):1368-1371.
[33] 黄俊. 固体火箭发动机测试技术[M]. 北京:航空工业出版社, 1989.
[34] 武利敏. 固体火箭发动机两相流计算模型分析与比较[D]. 哈尔滨:哈尔滨工程大学, 2007.
[35] 张宏安, 叶定友, 侯晓. 固体火箭发动机凝聚相微粒分布研究现状[J]. 固体火箭技术, 2000, 23(3):25-28.
[36] 张明信, 王国志, 魏剑维, 等. 影响Al2O3凝相尺寸分布的因素[J]. 推进技术, 2001, 22(3):250-253. (ZHANG Ming-xin, WANG Guo-zhi, WEI Jian-wei, et al. Factors Influencing Al2O3 Condensed Phase Sizing Distribution[J]. Journal of Propulsion Technology, 2001, 23(3): 25-28.) 收稿日期:2018-05-25;修订日期:2018-08-21。基金项目:国家“九七三”项目(97361338)。作者简介:周伟,博士,副教授,研究领域为飞行器总体设计、动力系统仿真与验证。E-mail: zw_yj@163.com通讯作者:谢飞,硕士生,研究领域为固体火箭发动机内流场数值模拟。E-mail: xiefei521520@163.com(编辑:史亚红)
|