[1] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6): 1861-1875.
[2] 吴振强, 任芳, 张伟. 飞行器结构热噪声试验的研究进展[J]. 导弹与航天运载技术, 2010, 306(2): 24-30.
[3] 代光月, 贾洪印, 曾磊, 等. 多场耦合效应对高超声速进气道入口参数影响[J]. 推进技术, 2018, 39(6): 1267-1274. (DAI Guang-yue, JIA Hong-yin, ZENG Lei, et al. Effects of Fluid-Thermal-Structural Coupling on Inlet Parameters of Hypersonic Intake[J]. Journal of Propulsion Technology, 2018, 39(6): 1267-1274.)
[4] Bhangale R K, Ganesan N. Thermoelastic Buckling and Vibration Behavior of a Functionally Graded Sandwich Beam with Constrained Visco Elastic Core[ J ]. Journal of Sound and Vibration, 2006, 295 (1-2): 294-316.
[5] Ng C F, Clevenson S A. High-Intensity Acoustic Tests of a Thermally Stressed Plate[J]. Journal of Aircraft, 1991, 28(4): 275-281.
[6] Ng C F, Wentz K R. The Prediction and Measurement of Thermo-Acoustic Response of Plate Structures[C]. Long Beach: 31st Structures, Structural Dynamics and Materials Conference, 1990.
[7] Chen R X, Mei C. Finite Element Nonlinear Random Response of Beams to Acoustic and Thermal Loads Applied Simultaneously[C]. La Jolla: 34th Structures, Structural Dynamic and Materials Conference, 1993.
[8] Vaicaitis R. Nonlinear Response and Sonic Fatigue of National Aerospace Space Plane Surface Panels[J]. Journal of Aircraft, 1994 , 31(1): 10-18.
[9] 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J]. 计算机辅助工程, 2006, 15(S1): 15-18.
[10] 黄世勇, 王智勇. 热环境下的结构模态分析[J]. 导弹与航天运载技术, 2009, 303(5): 50-56.
[11] 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析[J]. 航空学报, 2011, 32(11): 1851-1859.
[12] SHA Yundong, WEI Jing, GAO Zhijun, et al. Nonlinear Response with Snap-Through and Fatigue Life Prediction for Panels to Thermo-Acoustic Loadings[J]. Journal of Vibration and Control, 2014, 20(5):679-697.
[13] 王春光, 任全彬, 田维平, 等. 固体火箭发动机壳体强度热力耦合分析[J]. 推进技术, 2013, 34(1): 109-114. (WANG Chun-guang, REN Quan-bin, TIAN Wei-ping, et al. Coupling Thermo-Mechanical Analysis on Strength of Case in Solid Rocket Motor[J]. Journal of Propulsion Technology, 2013, 34(1):109-114.)
[14] 沙云东, 王建, 赵奉同, 等. 热声激励下高温合金壁板结构振动响应试验验证与疲劳寿命预测[J]. 推进技术, 2017, 38(8): 1847-1856. (SHA Yun-dong, WANG Jian, ZHAO Feng-tong, et al. Vibration Responses Experimental Verification and Fatigue Life Prediction of Superalloy Thin-Walled Structures under Thermal-Acoustic Excitations[J]. Journal of Propulsion Technology, 2017, 38(8): 1847-1856.)
[15] Przekop A. Nonlinear Response and Fatigue Estimation of Aerospace Curved Surface Panels to Acoustic and Thermal Load[D]. Norfolk: Old Dominion University, 2003.
[16] Locke J E, Mei C. Finite Element, Large-Deflection Random Response of Thermally Buckled Beams[J]: AIAA Journal, 1990, 28(12): 2125-2131.
[17] Ribeiro P, Manoach E. The Effect of Temperature on the Large Amplitude Vibrations of Curved Beams[J]. Journal of Sound and Vibration, 2005, 285(5): 1093-1107.
[18] Marlana N, Anurag Shrma, Adam Przekop, et al. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure[C]. Orlando: 51st Structures, Structural Dynamics, and Materials Conference, 2010.
[19] 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.
[20] Tzou H S, BAO Y. Nonlinear Piezothermalelasticity and Multi-Field Actuation, Part 1: Nonlinear Anisotropic Piethermalelastic Shell Laminates[J]. Journal of Vibration and Acoustics, 1997, 119(3): 374-381.
[21] 贺尔铭, 刘峰, 胡亚琪, 等. 热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测[J]. 振动与冲击, 2013, 32(24): 135-139.
[22] Yang J N. On the Normality and Accuracy of Simulated Random Processes[J]. Journal of Sound and Vibration, 1973, 26(3): 417-428. 收稿日期:2018-08-27;修订日期:2018-11-01。通讯作者:邹学锋,硕士生,工程师,研究领域为热/声/振多场环境下结构强度分析与试验技术。 (编辑:梅瑛)
|