推进技术 ›› 2019, Vol. 40 ›› Issue (5): 1144-1152.

• 测试 试验 控制 • 上一篇    下一篇

高空台飞行环境模拟系统数字建模与仿真研究

裴希同1,2,张 松1,2,但志宏1,2,朱美印3,钱秋朦1,王 曦3   

  1. 中国航发四川燃气涡轮研究院,四川 绵阳 621703; 中国航发四川燃气涡轮研究院 高空模拟技术重点试验室,四川 绵阳 621703,中国航发四川燃气涡轮研究院,四川 绵阳 621703; 中国航发四川燃气涡轮研究院 高空模拟技术重点试验室,四川 绵阳 621703,中国航发四川燃气涡轮研究院,四川 绵阳 621703; 中国航发四川燃气涡轮研究院 高空模拟技术重点试验室,四川 绵阳 621703,北京航空航天大学 能源与动力工程学院,北京 100083,中国航发四川燃气涡轮研究院,四川 绵阳 621703,北京航空航天大学 能源与动力工程学院,北京 100083
  • 发布日期:2021-08-15
  • 作者简介:裴希同,硕士,工程师,研究领域为航空发动机高空模拟技术。E-mail: peixitong@126.com 通讯作者:张 松,博士,研究员,研究领域为航空发动机高空模拟技术。
  • 基金资助:
    高空模拟技术重点实验室基金(SYS-02-2015;SYS-08-2015;SYS-07-2016)。

Study on Digital Modeling and Simulation of Altitude Test Facility Flight Environment Simulation System

  1. AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China;Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment, Mianyang 621703,China,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China;Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment, Mianyang 621703,China,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China;Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment, Mianyang 621703,China,School of Energy and Power Engineering,Beihang University,Beijing 100083,China,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China and School of Energy and Power Engineering,Beihang University,Beijing 100083,China
  • Published:2021-08-15

摘要: 为了分析新建高空台飞行环境模拟系统试验设备动态控制特性,研究各子系统关联耦合性,开展了系统建模和仿真研究。采用相似理论和部件级建模方法针对进排气关键调节阀、液压伺服系统和管道容腔等进行了数学建模研究,建立了相应设备特性模型,设计了双闭环进排气压力自动控制结构。在对实际控制系统功能性分解基础上,构建了飞行环境模拟系统数字仿真平台,并在数字仿真平台上进行了压力动态控制仿真。仿真结果表明各子系统压力动态建立过程与真实高空模拟试验过程趋势一致,能够反映真实系统的压力动态过程,证明了系统数学模型的合理性。利用仿真方法模拟了发动机流量变化对各控制子系统的影响,稳压腔压力最大偏差为4.5kPa,发动机进气压力最大偏差为3.4kPa,排气压力最大偏差为1.5kPa,验证了飞行环境模拟系统控制性能。

关键词: 高空台;高空模拟试验;数字建模;仿真;控制

Abstract: In order to analyze the dynamic control performance of a newly built altitude test facility flight environment simulation system and study the coupling level of each subsystem, the modeling and simulation of the system were conducted. The characteristics of the inlet valves, exhaust valve, the hydraulic servo system and the pipe-volume were studied by numerical method. Using similar theory and component level modeling method, the mathematical models of the test facilities were established, and the double closed-loop pressure control structure of the flight environment simulation system was designed. Based on the function decomposition of actual system, the digital simulation platform of the flight environment simulation system was established, and pressure dynamic control simulation was carried out in the platform. Simulation results indicate that the pressure dynamic regulating processes were consistent with the actual system and could reflect the pressure dynamic regulating processes of the actual system, the mathematical models of the system were reasonable. To examine the dynamic control performance of the flight environment simulation system, the influence of engine mass flow variation on each subsystem was simulated in the simulation platform, and the maximum pressure deviation of pressure stabilizing cavity, inlet and exhaust of engine was 4.5kPa, 3.4kPa and 1.5kPa.

Key words: Altitude test facility;Simulated altitude test;Digital modeling;Simulation;Control