[1] 侯敏杰. 高空模拟试验技术[M]. 北京:航空工业出版社, 2014.
[2] Peter A Montgomery, Rick Burdette. Evolution of a Turbine Engine Test Facility to Meet the Test Needs of Future Aircraft Systems[C]. Amsterdam: Proceedings of ASME TURBO EXPO, 2002.
[3] Krupp, Brian E. Heat Transfer Analysis of AEDC Test Cell J-2 Inlet Ducting Using a Lumped-Parameter Mathematical Model[D]. KNOxville: University of Tennessee, 1998.
[4] Peter A Montgomery, Rick Burdette, Brian Krupp. A Real-Time Turbine Engine Facility Model and Simulation for Test Operations Modernization and Integration [R]. ASME 2000-GT-0576.
[5] Peter A Montgomery, Rick Burdette, Larry Wilhite, et al. Modernization of a Turbine Engine Test Facility Utilizing a Real-Time Facility Model and Simulation [R] . ASME 2001-GT-0573.
[6] Milt Davis, Peter Montgomery. A Flight Simulation Vision for Aeropropulsion Altitude Ground Test Facilities[J]. Transactions of the ASME, 2002, 127: 21-31.
[7] Bradley M King, Joshua S Frederik. Evaluation of AEDC Concurrent Engine Test Capability[R]. AIAA 2008-1660.
[8] Doug Garrard, Dusty Vaughn, Alan Milhoan. Checkout Testing of the New Basic Process Control System at the Aerodynamic and Propulsion Test Unit[R]. AIAA 2012-5969.
[9] Doug Garrard, Alan Milhoan. Upgrades to the Aerodynamic and Propulsion Test Unit Heated Fuel System [R]. AIAA 2014-2766.
[10] Doug Garrard, Sharon Rigney. Hypersonic Test Capabilities at the Aerodynamic and Propulsion Test Unit[R]. AIAA 2015-1784.
[11] Majid Boraira, David H Van Every. Design and Commissioning of a Multivariable Control System for a Gas Turbine Engine Test Facility[R]. AIAA 2006-3151.
[12] Klaus-J Schmidt, Ralph Merten, Martin Menrath, et al. Adaption of the Stuttgart University Altitude Test Facility for BR700 Core Demonstrator Engine Tests[R]. ASME 98-GT-556.
[13] Bierkamp J, K?cke S, Prof-Dr-Ing S Staudacher, et al. Influence of ATF Dynamics and Controls on Jet Engine Performance[R]. ASME 2007-GT-27586.
[14] Weisser M, Bolk S, Staudacher S. Hard-in-the-Loop-Simulation of a Feedforward Multivariable Controller for the Altitude Test Facility at the University of Stuttgart[C]. Stuttgart: Deutscher Luft-Und Raumfahrtkongress, 2013.
[15] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-968. (CAO Jian-guo. Status, Challenges and Perspectives of Aero-Engine Simulation Technology[J]. Journal of Propulsion Technology, 2018, 39(5): 961-968.)
[16] 裴希同, 朱美印, 张松, 等. 一种特种流量特性计算的经验公式迭代方法[J]. 燃气涡轮试验与研究, 2016, 29(5): 35-39.
[17] 朱美印, 裴希同, 张松, 等. 一种轮盘式特种调节阀流量特性的修正算法[J]. 燃气涡轮试验与研究, 2016, 29(5): 40-45.
[18] 朱美印, 张松, 但志宏, 等. 一种大口径蝶阀流量特性的坐标定位回归算法[J]. 燃气涡轮试验与研究, 2017, 30(4): 39-44.
[19] 李洪人. 液压控制系统[M]. 北京:国防工业出版社, 1981.
[20] 宋志安. 基于MATLAB的液压伺服控制系统分析与设计[M]. 北京:国防工业出版社, 2007.
[21] 冯青. 工程热力学[M]. 西安:西北工业大学出版社, 2006. 收稿日期:2018-05-07;修订日期:2018-07-03。基金项目:高空模拟技术重点实验室基金(SYS-02-2015;SYS-08-2015;SYS-07-2016)。作者简介:裴希同,硕士,工程师,研究领域为航空发动机高空模拟技术。E-mail: peixitong@126.com通讯作者:张松,博士,研究员,研究领域为航空发动机高空模拟技术。E-mail: zs3365475@sohu.com(编辑:梅瑛)
|