[1] Zhang X, Pan L, Wang L, et al. Review on Synthesis and Properties of High-Energy-Density Liquid Fuels: Hydrocarbons, Nanofluids and Energetic Ionic Liquids[J]. Chemical Engineering Science, 2018, 180(2): 95-125.
[2] Chung H S, Chen C S H, Kremer R A, et al. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels [J]. Energy & Fuels, 1999, 13(3): 641-649.
[3] 潘伦, 邓强, 鄂秀天凤, 等. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.
[4] 邹吉军, 郭成, 张香文, 等. 航天推进用高密度液体碳氢燃料:合成与应用[J]. 推进技术, 2014, 35(10): 1419-1425. (ZOU Ji-Jun, GUO Cheng, ZHANG Xiang-wen, et al. High-Density Liquid Hydrocarbon Fuels for Aerospace Propulsion: Synthesis and Application[J]. Journal of Propulsion Technology, 2014, 35(10): 1419-1425.)
[5] 邹吉军, 张香文, 王莅, 等. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料, 2007, 15(4): 411-415.
[6] Zou J J, Xiong Z, Zhang X, et al. Kinetics of Tricyclopentadiene Hydrogenation over Pd-B/γ-Al2O3 Amorphous Catalyst[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4415-4420.
[7] Li Y, Zou J J, Zhang X, et al. Product Distribution of Tricyclopentadiene from Cycloaddition of Dicyclopentadiene and Cyclopentadiene: A Theoretical and Experimental Study[J]. Fuel, 2010, 89(9): 2522-2527.
[8] Wang L, Zou J J, Zhang X, et al. Rearrangement of Tetrahydrotricyclopentadiene Using Acidic Ionic Liquid: Synthesis of Diamondoid Fuel[J]. Energy & Fuel, 2011, 25(4): 1342-1347.
[9] Wang L, Zhang X, Zou J J, et al. Acid-Catalyzed Isomerization of Tetrahydrotricyclopentadiene: Synthesis of High-Energy-Density Liquid Fuel[J]. Energy & Fuels, 2009, 23(5): 2383-2388.
[10] Zou J J, Liu Y, Pan L, et al. Photocatalytic Isomerization of Norbornadiene to Quadricyclane over Metal(V, Fe and Cr)-Incorporated Ti-MCM-41[J]. Applied Catalysis B, 2010, 95(3): 439-445.
[11] 潘伦, 鄂秀天凤, 邹吉军, 等. 四环庚烷的制备及自燃性[J]. 含能材料, 2015, 23(10): 959-963.
[12] Pan L, Feng R, Peng H, et al. A Solar-Energy-Derived Strained Hydrocarbon as an Energetic Hypergolic Fuel[J]. RSC Advances, 2014, 4(92): 50998-51001.
[13] Palaszewski B. Apparatus for Production of Highly Dispersed Powders of Inorganic Materials by Electric Explosion and Reactor for Explosion of Metallic Component[R]. Patent of Russian Federation 2048278, 1995.
[14] Ellsion R. Gelled RP-1 Nanophase Aluminum Propellant[C]. Huntsville, Alabama: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.
[15] Mordosky J W. Spray Combustion of Gelled RP-1 Propellants Containing Nano-Sized Aluminum Particles in Rocket Engine Conditions[R]. AIAA 2001-3274.
[16] Satathi R, Sindhu T K, Chakravarthy S R. Generation of Nano Aluminum Powder Through Wire Explosion Process and Its Characterization[J]. Materials Characterization, 2007, 58(10): 148-155.
[17] Higa K T, Johnson C E, Hollins K T. Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating[J]. Chemistry of Materials, 2005, 17(16): 4086-4091
[18] Gedanken A. Using Sonochemistry for the Fabrication of Nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(3): 47-55.
[19] Chakraborty P, Zachariah M R. Do Nano Energetic Particles Remain Nano-Sized During Combustion?[J]. Combustion and Flame, 2014, 161(5): 1408-1416.
[20] Mueller D C, Turns S R. Theoretical Effects of Aluminum Gel Propellant Secondary Atomization on Rocket Engine Performance[J]. Journal of Propulsion and Power, 1996, 12(3): 43-52.
[21] Hedmann M F, Priem R J, Humphrey J C. A Study of Sprays Formed by Two Impinging Jets[R]. NACA Technical Note 3835, 1957.
[22] Negri M, Ciezki H K. Combustion of Gelled Propellants Containing Micro Sized and Nano Sized Aluminum Particles[J]. Journal of Propulsion and Power, 2015, 31(1): 400-407.
[23] Beloni E, Hoffmann V K, Dreizin E L. Combustion of Decane-Based Slurries with Metallic Fuel Additives[J]. Journal of Propulsion and Power, 2008, 24(6):1321-1334.
[24] 鄂秀天凤, 张香文, 徐胜利, 等. 添加纳米铝的高密度碳氢燃料点火性能研究[J]. 含能材料, 2017, 26(4): 290-296.
[25] 鄂秀天凤, 邹吉军, 张香文, 等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术, 2016, 37(5): 974-977. (E Xiu-tian-feng, ZOU Ji-jun, ZHANG Xiang-wen, et al. Study on Al NPs-Containing Suspensionas High-Density Liquid Fuel[J]. Journal of Propulsion Technology, 2016, 37(5): 974-977.)
[26] 鄂秀天凤, 张磊, 谢君健, 等. 添加纳米铝的高密度悬浮燃料点火性能[J]. 含能材料, 2018, 26(4): 290-296.
[27] E X-t-f, Zou J-J, Zhang X, et al. Al-Nanoparticle-Containing Nanofluid Fuel: Synthesis, Stability, Properties, and Propulsion Performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738-2745.
[28] E X-t-f, Zhi X, Zhang Y, et al. Jet Fuel containing Ligand-Protecting Energetic Nanoparticles: A Case Study of Boron in JP-10[J]. Chemical Engineering Science, 2015, 129(1): 9-13.
[29] E X-t-f, Zhang X, Zou J J, et al. Ignition and Combustion Performances of High-Energy-Density Jet Fuels Catalyzed by Pt and Pd Nanoparticles[J]. Energy Fuel, 2018, 32(2): 2163-2169.
[30] Luo Y, Xu X. Combustion of JP-10-Based Slurry with Nanosized Aluminum Additives[J]. Journal of Propulsion and Power, 2016, 32(5): 1167-1177.
[31] E X-t-f, Zhang X, Zou J J, et al. Synthesis of Aluminum Nanoparticles as Additive to Enhance Ignition and Combustion of High Energy Density Fuel [J]. Frontiers of Chemical Science and Engineering, 2018, 3(1): 1-9. 收稿日期:2018-06-19;修订日期:2018-08-15。作者简介:刘毅,博士生,高工,研究领域为航天燃料化学与技术。E-mail:33431609@qq.com通讯作者:张香文,博士,教授,博导,研究领域为航天燃料化学与技术。E-mail:zhangxiangwen@tju.edu.cn(编辑:朱立影)
|