[1] Rycroft M, Crosby N. Smaller Satellites: Bigger Business? Concepts, Applications and Markets for Micro/Nanosatellites in a New Information World[M]. Berlin: Springer Science & Business Media, 2013.
[2] 谭胜, 吴建军, 张宇, 等. 激光支持的空间微推进技术研究进展[J]. 推进技术, 2018, 39(11): 2415-2428. (TAN Sheng, WU Jian-jun, ZHANG Yu, et al. Research Progress of Laser-Supported Space Micropropulsion Technology[J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428.)
[3] 尤政. 空间微系统与微纳卫星[M]. 北京:国防工业出版社, 2013.
[4] Burton R L, Turchi P J. Pulsed Plasma Thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735.
[5] 吴汉基, 蒋远大, 张志远. 电推进技术的应用与发展趋势[J]. 推进技术, 2003, 24(5): 385-392. (WU Han-ji, JIANG Yuan-da, ZHANG Zhi-yuan. Application and Development Trend of Electric Propulsion Technology[J]. Journal of Propulsion Technology, 2003, 24(5): 385-392.)
[6] Molina-Cabrera P, Herdrich G, Lau M, et al. Pulsed Plasma Thrusters: a Worldwide Review and Long Yearned Classification[C]. Wiesbaden, Germany: 32nd International Electric Propulsion Conference, 2011.
[7] Sch?nherr T, Komurasaki K, Herdrich G. Propellant Utilization Efficiency in a Pulsed Plasma Thruster[J]. Journal of Propulsion and Power, 2013, 29(6): 1478-1487.
[8] Fruchtman A. Limits on the Efficiency of Several Electric Thruster Configurations[J]. Physics of Plasmas, 2003, 10(5): 2100-2107.
[9] Kimura I, Yanagi R, Inoue S. Preliminary Experiments on Pulsed Plasma Thrusters with Applied Magnetic Fields[R]. AIAA 78-655.
[10] Kimura I, Ogiwara K, Yanagi R, et al. Effect of Applied Magnetic Fields on a Solid-Propellant Pulsed Plasma Thruster[R]. AIAA 79-2098.
[11] Takegahara H, Ohtsuka T. Performance Improvement Study of Pulsed Teflon Plasma Thruster, Part Ⅰ: Effects of Applied Magnetic Field on Performance[J]. Japan Society for Aeronautical and Space Sciences, 1993, 41: 37-44.
[12] Kozawa S. Trends and Problems in Research of Permanent Magnets for Motors-Addressing Scarcity Problems of Rare Earth Elements[J]. Science & Technology Trends, 2011, 38: 40-54.
[13] Mori S, Shindo T, Tajiri K, et al. Effects of Electric Charge in Capacitors on Pulsed Plasma Thruster Performance with External Magnetic Field[C]. Washington: 33rd International Electric Propulsion Conference, 2013.
[14] 张代贤. 激光支持的脉冲等离子体推力器理论、实验与仿真研究[D]. 长沙:国防科技大学, 2014.
[15] 张华, 吴建军, 张代贤, 等. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型[J]. 物理学报, 2013, 62(21).
[16] 侯大立, 赵万生, 康小明. 脉冲等离子体推力器的性能分析[J]. 推进技术, 2008, 29(3): 377-380. (HOU Da-li, ZHAO Wan-sheng, KANG Xiao-ming. Performance Analysis of Pulsed Plasma Thruster[J]. Journal of Propulsion Technology, 2008, 29(3): 377-380.)
[17] Turchi P J, Mikellides P G. Modeling of Ablation-Fed Pulsed Plasma Thrusters[R]. AIAA 95-2915.
[18] 尹乐, 周进, 缪万波, 等. 脉冲等离子体推力器放电波形设计评估仿真研究[J]. 推进技术, 2010, 31(4): 490-495. (YIN Le, ZHOU Jin, MIAO Wan-bo, et al. Design and Simulation of the Discharge Current Wave for Pulsed Plasma Thruster[J]. Journal of Propulsion Technology, 2010, 31(4): 490-495.)
[19] 尹乐, 周进, 缪万波, 等. 脉冲等离子体推力器推进剂烧蚀传热计算[J]. 推进技术, 2010, 31(5): 623-628. (YIN Le, ZHOU Jin, MIAO Wan-bo, et al. Simulation of Propellant Ablation and Conduction of Pulsed Plasma Thruster[J]. Journal of Propulsion Technology, 2010, 31(5): 623-628.)
[20] 杨磊, 刘向阳, 陈成权, 等. 脉冲等离子体推力器宏观特性数值研究[J]. 推进技术, 2011, 32(6): 776-780. (YANG Lei, LIU Xiang-yang, CHEN Cheng-quan, et al. Numerical Analysis on Macro-Characteristics of Pulsed Plasma Thruster[J]. Journal of Propulsion Technology, 2011, 32(6): 776-780.)
[21] 张锐. 脉冲等离子体推力器工作过程仿真研究[D]. 长沙:国防科技大学, 2008.
[22] Vondra R, Thomassen K, Solbes A. Analysis of Solid Teflon Pulsed Plasma Thruster[R]. AIAA 70-179.
[23] Shaw P V, Lappas V J. Mathematical Modeling of High Efficiency Pulsed Plasma Thrusters for Microsatellites[C]. Valencia: 57th International Astronautical Congress, 2006. 收稿日期:2018-06-03;修订日期:2018-07-10。基金项目:国家自然科学基金面上项目(11772354)。作者简介:谭胜,博士生,研究领域为束能与电磁推进技术。E-mail: tsh201201401007@163.com通讯作者:吴建军,博士,教授,研究领域为束能与电磁推进技术和推进系统动力学、故障诊断与健康监控技术。E-mail: jjwu@nudt.edu.cn(编辑:陈夏夏)
|