[1] Lin C X, Holder R, Thornburg H, et al. Numerical Simulation of Film Cooling in Reactive Flow over a Surface with Shaped Coolant Hole[R]. AIAA 2009-678.
[2] Gritsch M, Schulz A, Wittig S. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits[R]. ASME 97-GT-164.
[3] Gritsch M, Colban W, Sch?īr H, et al. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes[J]. Journal of Turbomachinery, 2005, 127(4): 718-725.
[4] 朱惠人, 许都纯. 锥形排孔气膜冷却实验研究[J]. 推进技术, 1998, 19(3): 65-69. (ZHU Hui-ren, XU Du-chun. Film Cooling Experimental Investigation of a Row of Cone-Shaped Holes[J]. Journal of Propulsion Technology, 1998, 19(3): 65-69.)
[5] 朱惠人, 许都纯. 簸箕形排孔气膜冷却实验研究[J]. 航空学报, 1997, 18(5): 535-538.
[6] Brachmanski R E, Niehuis R, Bosco A. Investigation of a Separated Boundary Layer and Its Influence on Secondary Flow of a Transonic Turbine Profile[R]. ASME GT 2014-25890.
[7] Ochs M, Schulz A, Bauer H J. Investigation of the Influence of Trailing Edge Shock Waves on Film Cooling Performance of Gas Turbine Airfoils[R]. ASME GT 2007-27482.
[8] Saha R, Fridh J, Fransson T, et al. Suction and Pressure Side Film Cooling Influence on Vane Aero Performance in a Transonic Annular Cascade[R]. ASME GT 2013-94319.
[9] Liu J, Qiao W Y, Huang P, et al. Numerical and Experimental Investigation of Micro-Jet on the Suction Side of a Supersonic Turbine Cascade[R]. ASME GT 2014-26524.
[10] 王凯, 王松涛, 王仲奇. 冷气喷射法控制激波强度的数值研究[J]. 航空动力学报, 2010, 25(6): 1374-1380.
[11] 费微微, 单勇, 王敏敏, 等. 超声速涡轮叶栅超声速气膜冷却数值研究[J]. 推进技术, 2016, 37(5): 916-921. (FEI Wei-wei, SHAN Yong, WANG Min-min, et al. Numerical Study of Supersonic Film Cooling in Supersonic Turbine Cascade[J]. Journal of Propulsion Technology, 2016, 37(5): 916-921.)
[12] 吴宏, 杨登文. 新型台阶缝冷却结构的气动及冷却特性[J]. 北京航空航天大学学报, 2018, 44(2).
[13] 朱惠人, 原和朋, 周志强, 等. 几何结构对后台阶缝隙气膜冷却效率的影响[J]. 推进技术, 2006, 27(4): 312-315. (ZHU Hui-ren, YANG He-peng, ZHOU Zhi-qiang, et al. Effect of Geometry of Back-Step Slots on Film Cooling[J]. Journal of Propulsion Technology, 2006, 27(4): 312-315.)
[14] 原和朋, 朱惠人, 孔满昭. 后台阶三维缝隙冷却效率的数值模拟[J]. 燃气轮机技术, 2006, 19(4): 38-42.
[15] 朱惠人, 原和朋, 周志强, 等. 气动参数对后台阶三维缝隙气膜冷却效率的影响[J]. 航空动力学报, 2006, 21(2): 315-319.
[16] Benabed M, Azzi A, Jubran B A. Numerical Investigation of the Influence of Incidence Angle on Asymmetrical Turbine Blade Model Showerhead Film Cooling Effectiveness[J]. Heat and Mass Transfer, 2010, 46(8-9): 811-819.
[17] Chi Z, Ren J, Jiang H. Coupled Aerothermodynamics Optimization for the Cooling System of a Turbine Vane[J]. Journal of Turbomachinery, 2014, 136(5).
[18] 罗磊, 王松涛, 迟重然, 等. 传热设计流程在涡轴涡轮冷却中的应用[J]. 推进技术, 2013, 34(11): 1520-1529. (LUO Lei, WANG Song-tao, CHI Zhong-ran, et al. Application of Heat Transfer Design Process for Turbine in Turbo Shaft Engine[J]. Journal of Propulsion Technology, 2013, 34(11): 1520-1529.)
[19] 卢少鹏, 迟重然, 罗磊, 等. 气热耦合条件下涡轮静叶三维优化[J]. 推进技术, 2014, 35(3): 356-364.(LU Shao-peng, CHI Zhong-ran, LUO Lei, et al. Conjugate Heat Transfer 3-D Optimization for Turbine Stator[J]. Journal of Propulsion Technology, 2014, 35(3): 356-364.)(编辑:朱立影) 收稿日期:2018-03-19;修订日期:2018-05-12。基金项目:国家自然科学基金青年基金(51706051)。通讯作者:王宇峰,博士生,研究领域为叶轮机械气动热力学。E-mail: wangyflp@126.com
|