[1] Heidmann M F, Priem R J, Humphrey J C. A Study of Sprays Formed by Two Impinging Jets[R]. NACA TN 3835, 1957.
[2] Dombrowski N, Hooper P C. A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow[J]. Journal of Fluid Mechanics, 1964, 18(3):392-400.
[3] James M D, Kubal T D, Son S F, et al. Calibration of an Impinging Jet Injector Suitable for Liquid and Gelled Hypergolic Propellants[R]. AIAA 2009-4882.
[4] Jung, K, Khil T, Yoon Y. Effects of Orifice Internal Flow on Breakup Characteristics of Like-Doublet Injectors[J]. Journal of Propulsion and Power, 2006, 22(3):653-660.
[5] Jung K, Yoon Y, Hwang S S. Spray Characteristics of Impinging Jet Injectors Using Imaging Techniques[R]. AIAA 2000-3396.
[6] Jung K, Khil T, Yoon Y, et al. The Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors[R]. AIAA 2002-4177.
[7] 张蒙正, 张泽平, 李鳌, 等. 两股互击式喷嘴雾化性能实验研究[J]. 推进技术, 2000, 21(1):57-59. (ZHANG Meng-zhen, ZHANG Ze-ping, LI Ao, et al. Experimental Research on Spray Properties of Unlike Impinging Injectors[J]. Journal of Propulsion Technology, 2000, 21(1):57-59.)
[8] 刘晓伟, 胡伟, 曹晶, 等. 鲁泊数和孔径比对直流互击式喷注器性能的影响[J]. 火箭推进, 2010, 36(3):24-27.
[9] Dickerson R A. Like and Unlike Impinging Injection Element Droplet Sizes[J]. Journal of Spacecraft and Rocket, 1969, 6(11):1306-1308.
[10] Chen X D, Ma D J, Yang V. Mechanism Study of Impact Wave in Impinging Jets Atomization[R]. AIAA 2012-1089.
[11] Ma D J, Chen X D, Khare P, et al. Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets[R]. AIAA 2011-97.
[12] Grosshans H, Szász R Z, Fuchs L. Full Spray Simulation-Coupled Volume of Fluid and Lagrangian Particle Tracking methods[C]. Estoril, Portugal: 24th European Conference on Liquid Atomization and Spray Systems, 2011.
[13] Tomar G, Fuster D, Zaleski S, et al. Multiscale Simulations of Primary Atomization[J]. Computers & Fluids, 2010, 36(10):1864-1874.
[14] Kim D, Herrman M, Moin P. The Breakup of a Round Liquid Jet by a Coaxial Flow of Gas Using the Refined Level Set Grid Method[C]. Tampa Bay: 59th Annual Meeting of the APS divisions of Fluid Dynamics, 2006.
[15] Herrmann M. A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure[J]. Journal of Computational Physics, 2010, 229(3):745-759.
[16] Li X Y, Arienti M, Soteriou M C. Towards an Efficient, High-Fidelity Methodology for Liquid Jet Atomization Computations[R]. AIAA 2010-210.
[17] Li X Y, Soteriou M C. Prediction of High Density-Ratio Liquid Jet Atomization in Crossflow Using High Fidelity Simulations on HPC[R]. AIAA 2012-0175.
[18] Weller H G, Tabor G, Jasak H, et al. A Tensorial Approach to Computational Continuum Mechanics Using Object-Orientated Techniques[J]. Computers in Physics, 1998, 12(6):620-630.
[19] Edin B. Investigation of Free-Surface Flow Associated with Drop Impact: Numerical Simulations and Theoretical Modeling[D]. Aus Zenica: Technischen Universit?t Darmstadt zur, 2010.
[20] Brackbill J U, Kothe D B, Zemach C. A Continuum Method for Modeling Surface Tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.
[21] Yoshizawa A, Horiuti K. A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows[J]. Journal of the Physical Society of Japan, 1985, 54(8):2834-2839.
[22] Villiers E D, Gosman A D, Weller H G. Large Eddy Simulation of Primary Diesel Spray Atomization[R]. SAE International, 2004-01-0100.
[23] [C]erne G, Petelin S, Tiselj I. Numerical Errors of the Volume-of-Fluid Interface Tracking Algorithm[J]. International Journal for Numerical Methods in Fluids, 2002, 38(4):329-350.
[24] Arlov D, Revstedt J, Fuchs L. A Different Approach for Handling Large Bubbles in a Square Cross-Sectioned Bubble Column Combining Large Eddy Simulation with Lagrangian Particle Tracking [C]. Leipzig, Germany: 6th International Conference on Multiphase Flow, 2007.
[25] Vallier A, Revstedt J, Nilsson H. Procedure for the Break-up of Cavitation Sheet[C]. Belgrade, Serbia: 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 2011.
[26] Eggels J, Unger F, Weiss M, et al. Fully Developed Turbulent Pipe Flow: a Comparison Between Direct Numerical Simulation and Experiment[J]. Journal of Fluid Mechanics, 1994, 268(12):175-209.
[27] Rudman M, Blackburn H M. Large Eddy Simulation of Turbulent Pipe Flow[C]. CSIRO, Melbourne: Second International Conference on CFD in the Minerals and Process Industries, 1999.
[28] Villiers E D. The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows[D]. London: Imperial College of Science, 2006.
[29] 石少平, 庄逢辰. 射流撞击雾化索太尔平均直径的计算[J]. 推进技术, 1995, 16(3):22-25. (SHI Shao-ping, ZHUANG Feng-chen. Calculation of the Sauter Mean Diameter of Jet-Impinging Atomizers[J]. Journal of Propulsion Technology, 1995, 16(3):22-25.)(编辑:朱立影) * 收稿日期:2013-10-28;修订日期:2014-01-06。基金项目:国家重大基础研究项目(613193)。作者简介:刘昌波(1979—),男,博士生,研究领域为液体火箭发动机设计。E-mail:5993705@qq.com
|